Network Based Advanced Diagnostics

Stefan Zeppetzauer
30th October 2018 - Novi, Michigan
SMART PinPointer
Network-based advanced diagnostics

Powered by Cloud
Beyond Traditional Diagnostics

An Introduction
What would you Recommend?

Scenario - An unwell person is experiencing multiple symptoms.
Which of the following approaches would you recommend for this person?

Approach A
Symptomatic Treatment

Treat for **All possible symptoms**, simultaneously - **without knowing** the core problem

Approach B
Identify the Root Cause First

Identify the **Root cause** of problems experienced by the person, before **starting** to **treat the symptoms**
Accurate, Efficient and **Cost effective Diagnostics**

Simultaneous **Reasoning** with **Advanced Troubleshooter**

Guided Diagnostic Solution

Use of **Absent** DTCs

With **pin-pointed Root Cause Analysis** at its **core**, it provides...

Vehicle specific diagnostics

Field feedback usage

Dynamic Test/Repair **Ranking**
Why is a Smart Guided Troubleshooter like solution so relevant Today?
Evolution of Diagnostics

Traditional Diagnostic Problem Statements

- Design & Engineering processes are **Siloed**
- Multiple **DTC’s** relate to a single issue
- Increasing number of **complex variants**
- Low **Fix First Visit** (FFV) rates
- High number of **No Trouble Found** (NTF) cases
- Increasing **Warranty Costs**

Transitioning from Static to Dynamic Vehicle Diagnostics

- **Service Manual**
 - Traditional service diagnostics
 - Static test/repair sequences

- **Manual Diagnosis**
 - Non-model based (e.g. analytics)
 - Partly-Dynamic test/repair sequences

- **K-GRIP**
 - Network based diagnostics
 - **Fully-Dynamic** test/repair sequences
 - Continuous improvement through integrated feedback loop

- **K-GRIP++**
 - Further improvement through Learning Technologies

Repair Time

Diagnosis Accuracy
Real World Implementation of K-GRIP | A Visualization

1. John takes a long journey in the Alps. At the end of journey the service lamp is blinking and he can hear some brake noise.

2. Max, a Service Advisor connects an advanced diagnostic tool to John’s car which records the DTCs & Symptoms.

3. Lily, Service Technician runs the K-GRIP Diagnostics. It collects historical data for the vehicle and connects to the Cloud.

4. Lily gets all the required guidance from KPIT’s K-GRIP & she performs recommended tests and repairs.

5. Max, a Service Advisor connects an advanced diagnostic tool to John’s car which records the DTCs & Symptoms.

6. John is a delighted customer!!! His waiting time has been reduced significantly. His trust is increased as he knows exactly what has been done to his car.

Distribution of this document prohibited. No portion to be reproduced without prior written permission from KPIT Technologies Ltd.
Assimilating knowledge... In an Integrated and a Protected Environment

- Systems Engg.
- Historical Vehicle Data
- Service Tech’s Expertise
- Field f/b

- OEM specific System Engineering Inputs
- Vehicle’s data history
- Documented repair and troubleshooting steps
- Knowledge base of successful repair solutions

K-GRIP Learning Loop

- Secure OEM/technician communication
- Helps optimize Run-time troubleshooting
- Enables capturing of tacit knowledge and making it available explicitly
- Integration with public domain knowledge to expedite troubleshooting

Distribution of this document prohibited. No portion to be reproduced without prior written permission from KPIT Technologies Ltd.
Guided Diagnostics | Existing Market Solutions & KPIT’s Differentiation

- **DTC based Guided Diagnostic**
 - Dependent on technician’s expertise to follow multiple DTC test steps
 - Lengthy troubleshooting and less productive

- **Model based Guided Diagnostic**
 - Model prepared to reflect how the platform is actually engineered
 - Used in Aerospace since 90’s
 - High Accuracy Potential

- **Data Analytics based Guided Diagnostic**
 - Substantial amount of field data needed
 - System takes time to learn and be productive
 - Variant handling challenges
 - **Drawback: Ramp Up & Diagnostic Accuracy**

- **Network based Guided Diagnostic**
 - Network design enables coupling of domain knowledge and diagnostic data
 - Leverages Model based, DTC and Data Analytics based techniques
 - Determines which root causes of failure in this actual model can result in the case at hand
 - **High Accuracy & Fast Response Solution**

K-GRIP Differentiation

Distribution of this document prohibited. No portion to be reproduced without prior written permission from KPIT Technologies Ltd.
Industry Segments

Vehicle Design
document all parts & pieces of the vehicle architecture

Vehicle Design
document all fault scenarios from DFMEA + field feedback

Technicians
Pin Point Root Causes > efficiency < req. skills

Feedback Loop
to improve network model and improve FFV & NTF ratios

Relates Parts and Claims to Symptoms/Failure Modes
Reduce Warranty costs

Use Cases

Vehicle Design document all fault scenarios from DFMEA + field feedback

Technicians Pin Point Root Causes > efficiency < req. skills

Feedback Loop to improve network model and improve FFV & NTF ratios

Relates Parts and Claims to Symptoms/Failure Modes
Reduce Warranty costs

User Scenarios

User Scenarios

Network based Advanced Diagnostics

Vehicle Design document all fault scenarios from DFMEA + field feedback

Technicians Pin Point Root Causes > efficiency < req. skills

Feedback Loop to improve network model and improve FFV & NTF ratios

Relates Parts and Claims to Symptoms/Failure Modes
Reduce Warranty costs

Engineering

Engineering

Aftersales

Warranty

Network based Advanced Diagnostics
K-GRIP Solution | Benefits

Fast and Accurate Diagnostics
Based on rich set of data – Service info. Engineering docs etc.

Quick time to Market
Production ready as soon as model is developed and ever evolving

Product Agnostic
Reusable across multiple vehicle networks

Automated Model Development
Suite of automation tools for model development and validation
Fault Scenario

<table>
<thead>
<tr>
<th>DTC CODE</th>
<th>STATUS</th>
<th>CONSIDERED</th>
<th>FAULT CODE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0122</td>
<td>Active</td>
<td>Yes</td>
<td>INTAKE AIR TEMPERATURE SENSOR 1 CIRCUIT LOW</td>
</tr>
<tr>
<td>P0222</td>
<td>Active</td>
<td>Yes</td>
<td>THROTTLE POSITION SENSOR 2 CIRCUIT LOW</td>
</tr>
<tr>
<td>P2135</td>
<td>Active</td>
<td>Yes</td>
<td>THROTTLE POSITION SENSOR 1/2 CORRELATION</td>
</tr>
</tbody>
</table>

Test & Repair

<table>
<thead>
<tr>
<th>TEST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART: K922_Powertrain_(5.7L)</td>
<td>check for open</td>
</tr>
<tr>
<td>PART: F855_Powertrain_(5.7L)</td>
<td>check for open</td>
</tr>
</tbody>
</table>
TEST

<table>
<thead>
<tr>
<th>PART:</th>
<th>DESCRIPTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>K922_Powertrain_(5.7L)</td>
<td>check for open</td>
</tr>
<tr>
<td></td>
<td>Name: K922_Powertrain_(5.7L)</td>
</tr>
<tr>
<td></td>
<td>Ckt tracer color: DB</td>
</tr>
<tr>
<td></td>
<td>Display name: ENG - THROTTLE POS SNSR RTN</td>
</tr>
<tr>
<td></td>
<td>Ckt color: BN</td>
</tr>
</tbody>
</table>

RESOURCES

- THROTTLE CONTROL SYSTEM - 5.7L

REPAIR

<table>
<thead>
<tr>
<th>PART:</th>
<th>DESCRIPTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>K922_Powertrain_(5.7L)</td>
<td>Repair/Replace & Perform Powertrain Verification Test</td>
</tr>
<tr>
<td></td>
<td>Name: K922_Powertrain_(5.7L)</td>
</tr>
<tr>
<td></td>
<td>Ckt tracer color: DB</td>
</tr>
<tr>
<td></td>
<td>Display name: ENG - THROTTLE POS SNSR RTN</td>
</tr>
<tr>
<td></td>
<td>Ckt color: BN</td>
</tr>
</tbody>
</table>

RESULTS:

- Enter comments:
 - NO PROBLEM FOUND
 - OPEN
 - FIXED
 - PARTIALLY FIXED
 - DID NOT FIX
Thank you