Embedded approach to Remote Diagnostics

Enabling ‘On-the-Go’ repairs

Jaap van Bergeijk
Sub-Module Lead Service and Diagnostics
Agenda

- Introduction
- Service & Diagnostics in Transition
- On-Board served Diagnostics
Heritage or Legacy

- **Complex Electronic Architecture**
 - 1 to 6+ CAN busses
 - Individual components serviced via Ethernet, USB-media and Serial means

- **Diverse set of Diagnostic Protocols**
 - KWP variants, J1939 variants, proprietary protocols

- **Manufacturing & Service Tools**
 - Collection of data driven and custom built components
 - Very limited Operating System and Vehicle Communication Interface abstraction
Diagnostic environment has changed

 Repair and Maintenance Information (RMI) & Right 2 Repair (R2R)
 • Non-discriminatory access to Service & Diagnostics information and procedures

 Service and Diagnostics overhaul:
 • Move protection inside the Product
 • Reduce protocol variants
 • Data driven Diagnostic Tools
 • Seamless portability from Manufacturing stations to Service Tool instances to Remote Diagnostic & Telemetry services
How do we tackle this challenge?

IT Infrastructure → Technical Publications

Order, Produce, Record

Manufacturing

Diagnostic Content

UI microservices

DoIP & DoCAN

Service Tool

Diagnostic Gateway

Standard Diagnostic Runtime & Diagnostic API

Technical Publications

IT Infrastructure → Technical Publications

Order, Produce, Record

Manufacturing

Diagnostic Content

UI microservices

DoIP & DoCAN

Service Tool

Diagnostic Gateway

Standard Diagnostic Runtime & Diagnostic API

Technical Publications
What does a standardized diagnostic core mean?

Data Driven:
- ODX descriptions for all electronic components
 - Starts before the product is designed
 - Maintained through the lifecycle of the product
- OTX sequences for all interactions with electronic components
 - Development and Test
 - Manufacturing operations
 - After sales service operations

UI separation:
- Different functions have different UI requirements: decouple UI

Service tool agnostic:
- Data and sequences need to be able to be executed in different environments
From “classic” service tool
to onboard diagnostic server

IT Infrastructure

Technical Publications

Service Tool

Diagnostic Content

Order, Produce, Record

Manufacturing

On Board Diagnostic Server

UI microservices

ECU 1

ECU 2

ECU 3

ECU 4

ECU 5
to remote service

IT Infrastructure

Technical Publications

UI Microservices

Diagnostic Content

Telemetry

Order, Produce, Record

Manufacturing

Service Tool

On Board Diagnostic Server

Technical Publications

UI Microservices

Diagnostic Content

Telemetry
In practice

- Bandwidth and cellular coverage have limitations

- Certain service procedures require operator oversight or operator intervention

- "Blending" up-to-date service information with machine diagnostics is a key benefit of the new service solution that has to be maintained
The practical variant

IT Infrastructure Technical Publications Diagnostic Content Diagnostic Content

Order, Produce, Record

Service Tool

On Board Diagnostic Server

Technical Publications

Diagnostic Content

UI microservices

Manufacturing

13
Technology proof of concept
Technology conclusion

- **Onboard (telemetry) hardware is capable to:**
 - Execute standardized diagnostic content
 - Serve diagnostic data as micro services for integration in service tool UI
 - ARM A9 dual core, 650 MHz, 512 MB RAM / 2 GB flash

- **Leverage onboard hardware to:**
 - Protect the machine: authentication & encryption
 - Standardize the machine diagnostic interfaces
Final remarks

- **Impact on product development processes**
 - Machine electronic architecture requirements
 - Managing machine variants, options and configurations
 - Connecting all functions in an organization
 - Supplier parts management

- **Standardized content + separation of UI**
 - Enables diagnostic packaging down to individual machines
 - Enables integration of fleet level service instructions with machine state in real time