
TECHNICAL WHITEPAPER

—

Introduc�on to MemSQL

2019

 Introduc�on to MemSQL

Table of Contents
 Introduc�on 3
 Data Pla�orm Landscape 3
 How MemSQL Modernizes Data Pla�orms 5

Core MemSQL Technical Concepts 7
Code Genera�on and Compiled Plans 7
Lock-Free data structures 9
Mul�-Version Concurrency Control 10
Disk-op�mized columnstores and memory-op�mized rowstore tables 11
Distributed Query Processing 13

Core Architecture 16
Key Components of a MemSQL Cluster 17
Database Par��ons and Sharding 18
Sharded and Reference tables 19
Parallel Data Ingest with Pipelines 20

Cluster Management 21
Dynamic Cluster resizing 22
Data Replica�on 22
Feedback-driven Workload Manager 23
MemSQL Security 24
MemSQL Studio 25
Cloud-na�ve Support and Managed Service 2 6

MemSQL Innova�on History 2 7
Conclusion 2 8
Appendix: MemSQL Capability Checklist 29

 2

 Introduc�on to MemSQL

Introduc�on
This whitepaper introduces MemSQL as a modern data pla�orm with the speed, scale

and cost efficiencies to generate business value and insights from opera�onal data.

You’ll learn how MemSQL is designed and built to ingest data at high speeds, scale-out

efficiently and deliver record-breaking query performance with familiar rela�onal SQL.

Data Pla�orm Landscape

Historically, databases fit into one of two categories: those op�mized for online

transac�onal processing (OLTP) and those op�mized for online analy�cal processing

(OLAP). Transac�onal systems are tradi�onally separate from Analy�cal processing

systems, even though they could poten�ally be combined into a single system.

Transac�on systems are o�en revenue genera�ng, have strict availability requirements,

and are viewed as mission cri�cal.

OLAP running on Data warehouse systems are used to analyze large amounts of data

and require a lot of compu�ng resources. They are not generally as mission cri�cal.

Combining data warehouse and transac�on systems in a single database generally results

in the transac�on workload suffering and thus affec�ng the business adversely. Hence,

separa�on of the two has become standard.

A third type of data pla�orm, called an opera�onal data store (ODS), is used to support

opera�onal analy�cs. This data pla�orm allows the business to have near real-�me

visibility into rapidly changing events, such as orders and/or customer interac�on.

Success of the opera�onal data store is driven by the ability to handle streaming ingest

of data with a high number of concurrent analy�cal queries.

 3

 Introduc�on to MemSQL

An ODS receives transac�ons from an OLTP system in a minimally intrusive manner

using techniques such as extract transform and load(ETL) or change data capture. It also

serves as a source for the data warehouse. Tradi�onally, an ODS would serve as an

up-to-date replica of opera�onal data for a variety of analy�c requirements. However,

over the years, more data sources have driven a massive increase in data volume and

velocity crea�ng a series of challenges for legacy ODS technologies to keep up.

Figure 1. Legacy mul�-�ered ODS architecture

 4

 Introduc�on to MemSQL

How MemSQL Modernizes Data Pla�orms

First released in 2011, MemSQL is a third genera�on RDBMS wri�en in C/C++.

MemSQL is designed to run efficiently on modern systems; both mul�-core systems with

a big memory footprint and lower-powered edge compu�ng devices.

MemSQL is ANSI SQL-Compa�ble and na�vely supports structured, semi-structured, and

unstructured (full-text search) data. With built-in connectors to Ka�a, Spark, S3, and

Hadoop, as well as legacy transac�onal systems, MemSQL easily integrates with a broad

ecosystem to cover both real-�me streaming and batch workloads.

Figure 2. Modernizing legacy data pla�orms with MemSQL

 5

 Introduc�on to MemSQL

With support for JSON and Documents, MemSQL can ingest data from modern sources

such as mobile phones, social media, and smart devices and provide both transac�onal

and analy�cal capabili�es on a single pla�orm with the ease and familiarity of SQWith

MemSQL, all enterprise features, such as par��oning, security, high availability (HA), and

disaster recovery (DR), are included in the product and not licensed separately. As a

modern and efficient pla�orm, workloads o�en run on less hardware when compared to

legacy systems. Thus cost savings are realized in reduced so�ware spend, the reduc�on

of data silos through decoupling transac�ons from analy�c systems, the cost of

deployment, and maintenance costs in comparison to legacy vendors.

MemSQL can run legacy transac�onal workloads and serve as the ODS or data hub that

performs as an opera�onal analy�c backbone to power real-�me decisions across

reports, interac�ve dashboards, data science, and more.

 6

 Introduc�on to MemSQL

Core MemSQL Technical Concepts

In this sec�on we will go over some key technical concepts that underpin MemSQL’s

architecture. It’s these key technical differences that differen�ate it from other solu�ons

and make it a solu�on of choice for customers.

Code Genera�on and Compiled Plans

When a query is submi�ed to a database, the query is interpreted, an execu�on plan

generated and the query is executed. Op�mizing this process is cri�cal for performance.

MemSQL embeds an industrial compiler (LLVM) for low-level op�miza�ons along hot

code paths - op�miza�ons that are not possible when execu�ng via interpreta�on. This

approach also takes advantage of newer instruc�on sets that are available with modern

cpus.

When a MemSQL server encounters a query shape for the first �me, it generates a

just-in-�me execu�on plan, wri�en in C++, which is incrementally compiled to machine

code as it processes the query. This has two-fold benefits allowing op�mal query

performance with first run queries while offering extreme fast response �me to repeat

queries. Each compiled plan is cached to prepare for future invoca�ons of the given

query. When future queries match an exis�ng parameterized query plan template,

MemSQL bypasses code genera�on and executes the query immediately using the

cached plan.

 7

 Introduc�on to MemSQL

Figure 3. Compiled plans in MemSQL u�lizing and bypassing the code generator

A�er code genera�on, the compiled plans are saved for later use in a plan cache. Each

MemSQL node has its own plans and plan cache. A plan cache consists of two layers: the

in-memory plan cache and the on-disk plan cache. Plans stored in the in-memory plan

cache remain un�l they expire, or un�l the memSQL node restarts. When a plan expires,

it stays put in the on-disk plan cache, and is loaded back into memory the next �me the

query is executed. By interpre�ng SQL statements and implemen�ng compiled query

plans, MemSQL removes interpreta�on overhead and minimizes code execu�on paths.

Another key feature of MemSQL’s compiled plans is that they do not pre-specify values

for the parameters. Query parameters are dynamically extracted from a query template,

producing a normalized query that is then transformed into a specialized na�ve

representa�on (MemSQL Plan Language, or MPL). The generated execu�on plan is

wri�en in C++ and compiled to machine code. When queries that match the query

template are executed, MemSQL subs�tutes the parameter values, allowing the request

to reuse already-compiled plans and run quickly. Addi�onally, compiled plans are also

reused across server restarts, so they need to be only compiled once in an applica�on’s

life�me.

 8

 Introduc�on to MemSQL

Lock-Free data structures

Tradi�onal databases use locks (latches and enqueues) to manage serializa�on and they

run into issues such as deadlocks or priority inversion, when processes block each other

as they complete execu�on. This results in performance and scalability issues with

increasing volumes of concurrent read and write opera�ons.

Lock-free data structures that enable be�er scalability and performance are at the core

of MemSQL’s engine. Every component of the engine is built using lock-free data

structures including queues, stacks, hash tables, skip lists, and linked lists. For superior

memory management and efficiently managing transac�on state, lock-free queues and

stacks are used throughout the system. In the area of code genera�on, lock-free hash

tables are used to map query shapes to the compiled plans in the plan cache. MemSQL

also implements lock-free skip lists and hash tables that are kept in memory for fast,

random access to data. Lock-free skip lists are the primary index-backing data structure

in MemSQL. Compared to B-trees for disk-based databases, skip lists perform extremely

well in-memory and under high concurrency, thereby delivering be�er scalability.

Figure 4. Skiplist index

 9

 Introduc�on to MemSQL

Mul�-Version Concurrency Control

MemSQL favors parallelism and uses mul�-version concurrency control (MVCC) to

prevent queries from blocking each other in mul�-threaded applica�ons. Today’s

real-�me applica�ons - especially those with high volumes of streaming data, or mixed

read and write workloads - cannot tolerate the performance loss that comes with

database locking.

By having a concept of versioning, and preserving older versions, MVCC allows the

database to reduce the number of read-write conflicts among opera�ons. Versions in

MemSQL are implemented as a lock-free linked list. Each �me a transac�on modifies a

row, MemSQL creates a new version that sits on top of the exis�ng one. The new

version is visible only to the transac�on that performed the write - when accessing the

same row, read queries see the old version.

Modified rows are queued for garbage collec�on “behind the scenes,” so that old

versions are efficiently cleaned up, without the need for a full-table scan. MVCC delivers

efficiency and consistency across transac�ons. A lock in MemSQL only occurs in the case

of a write-write conflict on the same row. MemSQL takes a row level lock in this case

because it’s easier to program around - the alterna�ve would be to fail the second

transac�on, which requires the programmer to resolve the failure.

Implemen�ng lock-free data structures with MVCC enables MemSQL to avoid locking on

both reads and writes when upda�ng tables. As a result, writes can operate at greater

throughput, while a large number of concurrent reads happen simultaneously. Since

reads and writes never block one another, this minimizes query stalls and allows for

greater parallelism - concurrent threads can modify the same object, and even if one

thread stalls or stops in the middle of an opera�on, the remaining threads can carry on

processing data.

 10

 Introduc�on to MemSQL

Mul�-version concurrency control summary:

● Every write creates a new version of row
● Commits are atomic
● Old versions are garbage-collected
● Reads are never blocked
● Row-level locking for writes include

DELETE
● Allows for online ALTER TABLE

 Figure 5. MVCC control
summary

Disk-op�mized columnstores and memory-op�mized rowstore tables

MemSQL supports storing and processing data using two types of data stores: a

completely in-memory rowstore and a disk-backed columnstore. Rowstores and

columnstores differ both in storage format (row vs. column) and in storage medium (RAM

vs. disk). MemSQL allows querying rowstore and columnstore data together in the same

query.

The rowstore is typically used for highly concurrent online transac�on processing (OLTP)

and mixed OLTP/analy�cal workloads. The whole data set is kept in memory - providing

fast writes and suppor�ng thousands of concurrent queries.

Rowstores uses a transac�on log to avoid disk I/O bo�lenecks on writes. Transac�ons

are commi�ed to disk as logs and periodically compressed as snapshots of the en�re

database.

 11

 Introduc�on to MemSQL

Figure 6. MemSQL designed for durability

To restore a database, MemSQL loads the most recent snapshot and replays remaining

transac�ons from the log. The granularity of logging and frequency of snapshots are both

configurable. Because MemSQL only writes logs and snapshots to disk, all disk I/O is

sequen�al. In-memory writes are serialized into a transac�on buffer. A background

process pulls groups of transac�ons and persists them to disk.

MemSQL’s disk-based columnstore features up to 80% compression and is capable of

storing petabytes of data. Columnstores are op�mized for complex queries over large

data sets that don’t fit in memory. The user determines whether tables are stored as

rowstores or columnstores at table defini�on �me.

Figure 7. Rowstores and columnstores in MemSQL

 12

 Introduc�on to MemSQL

MemSQL supports indexing on Rowstore (Skiplist and Hash indexes) and Columnstore
(Hash indexes) to efficiently retrieve rows as needed.

Distributed Query Processing

MemSQL supports fast distributed query processing, with a query op�mizer that is fully

aware of data distribu�on, and a query execu�on system that takes advantage of

compila�on and vectoriza�on , achieving 10X to 100X performance gains. The following

diagram illustrates MemSQL query processing at a high level.

Query Op�miza�on

The MemSQL Query Op�mizer uses search and

heuris�cs, driven by cost models based on

sta�s�cs, to find high-quality distributed query

execu�on plans. The op�mizer is fully aware of

data distribu�on and can use broadcast, shuffle,

local-global aggrega�on, semi-join reduc�on,

and co-located join

 Figure8. Query op�miza�on

opera�ons to solve queries with limited and judicious use of data movement across the

cluster. Sta�s�cs and summary informa�on available to the op�mizer include dis�nct

count informa�on, histograms, and high-quality random samples of data from both row

store and column store tables.

The MemSQL Query Op�mizer is a modular component in the database engine. The

op�mizer framework is divided into three major modules:

 13

 Introduc�on to MemSQL

(1) Rewriter: The Rewriter applies SQL-to-SQL rewrites on the query. Depending on the

characteris�cs of the query and the rewrite itself, the Rewriter decides whether to apply

the rewrite using heuris�cs or cost; the cost being the distributed cost of running the

query. The Rewriter intelligently applies certain rewrites in a top-down fashion while

applying others in a bo�om-up manner, and also interleaves rewrites that can mutually

benefit from each other.

(2) Enumerator: The Enumerator is a central component of the op�mizer, which

determines the distributed join order and data movement decisions as well as local join

order and access path selec�on. It considers a wide search space of various execu�on

alterna�ves and selects the best plan, based on the cost models of the database

opera�ons and the network data movement opera�ons. The Enumerator is also invoked

by the Rewriter to cost transformed queries when the Rewriter wants to perform a

cost-based query rewrite.

(3) Planner: The Planner converts the chosen logical execu�on plan to a sequence of

distributed query and data movement opera�ons. The Planner uses SQL extensions

called RemoteTables and ResultTables to represent a series of Data Movement

Opera�ons and local SQL Opera�ons using a SQL-like syntax and interface, making it

easy to understand, flexible, and extensible.

Query Execu�on

MemSQL query execu�on technology tends to be superior overall to query execu�on

technology in legacy database systems, some�mes by up to a factor of 10 or more.

MemSQL's query execu�on technology is thus o�en a mo�va�ng factor to move

applica�ons to MemSQL to get lower TCO, a be�er user experience, or enable

applica�ons that were not feasible before. MemSQL parameterizes queries, compiles

them, and stores them in a plan cache. On subsequent execu�ons, MemSQL takes a

query plan from the cache and runs it so it need not be compiled again.

 14

 Introduc�on to MemSQL

Unlike established database products, MemSQL compila�on translates a query all the

way to machine code. This, combined with in-memory row store storage structures

designed with code genera�on in mind, allows query processing rates on the order of 20

million rows per second per core against an in-memory skip list row store table. That is

about 10X faster than the per-core processing rate for scans of the B-tree indexes found

in most legacy databases, in many cases.

For columnstore tables, MemSQL uses a high-performance vectorized query execu�on

engine that can operate on blocks of 4K rows at a �me, very efficiently. This vectorized

execu�on engine also makes use of single-instruc�on, mul�ple-data (SIMD) instruc�ons

available on Intel and compa�ble processors that support the AVX-2 instruc�on set.

Processing rates on columnstore tables are o�en over 100 million rows per second per

core, and some�mes as much as 2 billion rows per second per core when using SIMD

and opera�ons on encoded (compressed) data.

MemSQL also supports high-performance data movement for broadcast and shuffle

opera�ons. This implementa�on gets is speed by sending data over the wire in its na�ve

in-memory format, so it does not have to be serialized on the sending side or deserialized

on the receiving side. Rather, it can be operated on directly a�er it is received, saving

CPU instruc�ons, and thus total execu�on �me.

Query Processing Summary

Together, compiled query plans, flexible storage op�ons, lock-free data structures, MVCC

and a mature op�mizer allows for be�er performance on mul�ple cores with high data

accessibility, even under high concurrency. This is part of the "secret sauce" that makes

MemSQL different than other data pla�orms out there.

 15

 Introduc�on to MemSQL

Core Architecture

MemSQL u�lizes a distributed, shared-nothing architecture that runs on a cluster of

servers, and leverages memory and disk infrastructure for high throughput on concurrent

workloads. No two nodes in a MemSQL cluster share CPU, memory, or disk.

Figure 9. MemsSQL architecture

Our architecture is built for horizontal scalability on commodity hardware, in your data

center or in the cloud. MemSQL enables high performance and fault tolerance on large

data sets and high-velocity data.

 16

 Introduc�on to MemSQL

Key Components of a MemSQL Cluster

As shown in Figure 5, a MemSQL cluster consists of aggregator nodes and leaf nodes.

The aggregator serves as a query interceptor and router, manages cluster metadata and

is responsible for cluster monitoring and failover. A leaf node is a MemSQL server

instance that stores data and executes queries issued by the aggregator.

In typical deployments, the aggregator-to-leaf node ra�o is generally 1:5. Increasing the

number of aggregators can improve opera�ons like data loading and can allow for

MemSQL to process more client requests concurrently. Applica�ons serving many clients

have a higher aggregator-to-leaf ra�o, and those with more demanding storage

requirements need more leaves per aggregator.

Client applica�ons connect to an aggregator, which serves as the query router in the

cluster. When the client sends a SQL query, the aggregator will parse, compile and

distribute the query across the leaf nodes. In the leaf node, MemSQL may further

op�mize the query as needed and execute on the local store of data. This allows

MemSQL to maintain high query performance even with rapidly changing data. The leaf

nodes quickly compute the query results and send them back to the aggregator. The

aggregator then aggregates the results from each leaf and sends the final result back to

the client.

Figure 10. Massively parallel processing for query execu�on

 17

 Introduc�on to MemSQL

Database Par��ons and Sharding

When a user creates a database in MemSQL, it is always par��oned (a minimum of 2

par��ons).

As seen below , a database is a sum of all of its par��ons. Par��ons reside on the leaf

nodes.

Figure 11. Using leaf nodes as par��ons with MemSQL

Each par��on in-itself is implemented as a database on a leaf. When a sharded table is

created, it is split according to the number of par��ons of its encapsula�ng database.

Each par��on will hold a slice of the table.

Figure 12. Leveraging shard keys for distributed tables

 18

 Introduc�on to MemSQL

Sharded and Reference tables

MemSQL supports both distributed (or sharded) and reference (or duplicated) tables.

Both table formats can be as rowstore or columnstore tables. For sharded tables, the

primary key acts as the hash and each shard is stored on the respec�ve leaf nodes. For

reference tables, the table is replicated to all nodes (including aggregators) and is well

suited for smaller, slowly changing tables.

Figure 13. Sharded vs Reference Table designsData Types

MemSQL supports a variety of data types, including integers, �mestamp, string types like

CHAR and VARCHAR, and compound types such as computed columns, ENUM and SET.

Addi�onal complex data types that are supported include geospa�al, full text (search

capability), and semi-structured JSON data.

Parallel Data Ingest with Pipelines

MemSQL Pipelines is a MemSQL database feature that ingests data from external

sources in a con�nuous manner. As a built-in component of the database, Pipelines can

extract, transform, and load external data without the need for third-party tools or

middleware.

 19

 Introduc�on to MemSQL

Pipelines are robust, scalable, highly performant, and supports fully distributed

workloads.

Pipelines scales with MemSQL clusters as well as distributed data sources like Ka�a,

Amazon S3 and HDFS. Pipelines data is loaded in parallel from the data source to

MemSQL leaves, which improves throughput by bypassing the aggregator. Addi�onally,

Pipelines has been op�mized for low lock conten�on and concurrency.

The architecture of Pipelines ensures that transac�ons are processed exactly once, even

in the event of failover. Pipelines makes it easier to debug each step in the ETL process

by storing exhaus�ve metadata about transac�ons, including stack traces and stderr

messages.

MemSQL Pipelines Data Flow

Figure 14. Parallel data ingest in MemSQL using Pipelines

 20

 Introduc�on to MemSQL

Cluster Management
In this sec�on, we’ll go over the key cluster management aspects of MemSQL, including

the workload manager, distributed storage, and security.

MemSQL’s distributed system allows clusters to be scaled out at any �me to provide

increased storage capacity and processing power. Sharding occurs automa�cally and the

cluster re-balances data and workload distribu�on. Data remains highly available and

nodes can go down with li�le effect on performance. As Data is distributed and the

cluster is self-healing and elas�c, it allows for scale-out/in data processing.

With �ered storage, you can take advantage of MemSQL’s memory-op�mized rowstore

tables for high-speed query processing or inges�on, or disk-op�mized columnstore

tables for analy�cs. MemSQL has a SQL query op�mizer that runs on both row-based

and column-based tables. This gives you the ability to do transac�onal processing,

analy�c processing, or both at once, using the best table structure for each workload.

Dynamic Cluster resizing

MemSQL features powerful but simple cluster management with dynamic cluster

opera�ons and no single point of failure. You can add or remove nodes - leaves or

aggregators - to the cluster at any �me while keeping the cluster online, even while

running a workload.

Figure 15. Scaling-out a MemSQL cluster

 21

 Introduc�on to MemSQL

Data Replica�on

A MemSQL cluster is resilient to failure with automa�c failover and self-healing

capabili�es. MemSQL allows you to store a redundant copy of data within a cluster. Leaf

nodes are organized into availability groups such that each node is paired with a node in

the other availability group. Each leaf node has a pair that replicates its data, and can be

configured to do so synchronously or asynchronously. In case of node failure, MemSQL

restores data and promotes replica par��ons to put the cluster back online.

Figure 16. Replicas in MemSQL are promoted to master

MemSQL also supports fully automa�c cross-data center replica�on that can be

provisioned with a single command. The replica cluster stores a read-only copy of data

asynchronously replicated from the primary cluster. In the event of a major failure in the

primary cluster, MemSQL can promote the secondary cluster, immediately making it a

"full" MemSQL cluster. In addi�on to providing disaster recovery assurance, the

secondary cluster can also be used for heavy read-only workloads.

 22

 Introduc�on to MemSQL

Feedback-driven Workload Manager

MemSQL automa�cally manages cluster workloads func�ons that limit execu�on of

queries that require fully-distributed execu�on to ensure that they are matched with

available system resources. Using built-in ML func�ons, workload management

intelligently es�mates the number of connec�ons and threads needed to execute queries

that require reshuffle and broadcast opera�ons, and admits the query only if workload

management can assign the necessary resources.

Workload management also es�mates the amount of memory required to execute

queries and only runs queries if sufficient memory is expected to be available.

Queries that are not immediately executed are queued and are executed when system

resources become available. Workload management improves overall query execu�on

efficiency and prevents workload surges from overwhelming the system. It allows queries

to run successfully when the system is low on connec�ons, threads, or memory.

Resource pools include the following:

●Memory Percentage : This is the percentage of memory resources allocated to the

pool

●Query Timeout : The number of seconds specifying the �me a�er which a query

running in the pool will be automa�cally terminated

●So� and Hard CPU Limit Percentage : This is the percentage of CPU resources

allocated to the pool

●Maximum Concurrency : The maximum number of concurrent SQL queries that are

allowed to run cluster-wide across all aggregators

 23

 Introduc�on to MemSQL

MemSQL Security

Security is an important aspect of any data pla�orm. To meet regulatory and compliance

requirements, MemSQL supports several security features in the areas of authen�ca�on,

authoriza�on, audi�ng, and encryp�on.

Exis�ng account access can be easily managed via PAM (Pluggable Authen�ca�on

Module), SAML, or GSSAPI (Kerberos) authen�ca�on support. MemSQL also implements

RBAC to protect sensi�ve data for tens of thousands of dis�nct users and their specific

access roles.

MemSQL’s audi�ng feature provides configurable database logging to a secure external

loca�on to support informa�on security tasks such as tracking user access. Data can be

encrypted at ingest �me and is distributed across nodes over TLS.

 24

 Introduc�on to MemSQL

MemSQL Studio

The MemSQL Studio interface lets you monitor, debug and interact with all of your

MemSQL Clusters. Designed to be lightweight, easy to deploy, and easy to upgrade,

MemSQL Studio provides the tools you need to maintain cluster health without the

overhead of complex, heavyweight, and error-prone client so�ware. The built-in query

profiler delivers historical usage sta�s�cs to shed light on what queries and resources are

u�lizing the most �me. You can visualize and diagnose query bo�lenecks and compute

resources to ensure op�mal performance and availability.

Figure 17. MemSQL Studio tool

MemSQL Studio turns user ac�ons into standard SQL queries that are run against your

MemSQL Cluster. Results are then displayed back to you in the form of tables and

graphics that help you understand your cluster be�er. Conceptually, MemSQL Studio is a

UI on top of the MemSQL database engine itself, pairing the stability and security

guarantees of the command line with the ease of use of a visual UI. MemSQL Studio also

comes with an in-built visual SQL client, so it can be used safely alongside other tools

such as MemSQL Ops.

 25

 Introduc�on to MemSQL

Cloud-na�ve Support and Managed Service

As a cloud-na�ve database, MemSQL can deploy across hybrid, mul�-cloud, and

on-premises environments. The MemSQL Kubernetes Operator provides an easy way to

deploy and manage data infrastructure on private or public clouds.

Managing a cluster is simple with the Kubernetes Operator. With the Kubernetes

command-line interface (CLI) and the Kubernetes API, the Operator can be used the

same way as other standard Kubernetes tools. The commands and opera�ons are the

same across all the major clouds, public and private, as well as in on-premises

environments. You describe the state of the cluster that you want; Kubernetes creates it,

and then maintains that state for you.

MemSQL also provides Managed Services on AWS/Azure/GCP Public Cloud pla�orms.

MemSQL manages all management aspects of the cluster freeing the customer of the

necessity to maintain a dedicated staff for administra�on of the cluster.

 26

 Introduc�on to MemSQL

MemSQL Innova�on History

MemSQL offers a full featured database pla�orm through 6 plus years of innova�ve

engineering. The chart below describes some of the notable advances over �me.

MemSQL History and Roadmap

Figure 18. MemSQL innova�on history

 27

 Introduc�on to MemSQL

Conclusion

Modern enterprises requires a data pla�orm that is versa�le, cost efficient, and

performant. Not only does the data pla�orm needs to support and improve legacy

workloads, but also be able to deliver on new business requirements.

MemSQL is a modern data pla�orm that is well suited to meet today’s demanding

requirements. It offers an easy migra�on path from legacy pla�orms, is cloud-friendly,

and supports modern workloads seamlessly.

MemSQL allows for infrastructure convergence, simplicity, and support for predic�ve

capabili�es in a cost-effec�ve and highly performant manner.

 28

 Introduc�on to MemSQL

Appendix: MemSQL Capability Checklist

MemSQL Capabili�es MemSQL

ARCHITECTURE

Distributed Shared Nothing Scale out Architecture ⬤

ACID transac�ons ⬤

High Availability and Disaster Recovery ⬤

Lock-free synchroniza�on ⬤

Mul�-version concurrency control ⬤

Distributed Query execu�on ⬤

Deployment flexibility (Mul�-Cloud and On-Premises) ⬤

Compressed columnar table format on disk ⬤

Row store in memory ⬤

QUERY

SQL-92 ⬤

SQL-99 OLAP Extensions ⬤

SQL-2003 extensions ⬤

Mul�-statement transac�on ⬤

 29

 Introduc�on to MemSQL

SELECT FOR UPDATE ⬤

Procedural Language with support for Procedures, UDF, TVF and
UDAF

⬤

Full text search ⬤

Vectoriza�on and single instruc�on, mul�ple data (SIMD) ⬤

Opera�ons on encoded data ⬤

Bloom filter pushdown for hash join ⬤

Local join support (hash, merge, nested loop) ⬤

Distributed join support (broadcast and reshuffle) ⬤

Query op�miza�on and Auto Sta�s�cs ⬤

Oracle compa�bility extensions ⬤

Adap�ve query compila�on and execu�on ⬤

Just-in-�me (JIT) compila�on ⬤

STORAGE

Rowstore In-Memory (with compression) ⬤

Rowstore skiplist indexes In-Memory ⬤

Columnstore on Disk ⬤

Columnstore Hash indexes on Disk ⬤

Sharded and Reference tables ⬤

Temporary tables ⬤

DATA TYPES

 30

 Introduc�on to MemSQL

JSON ⬤

Rela�onal ⬤

Full text ⬤

Geospa�al ⬤

INGESTION

Na�ve pipeline for data inges�on ⬤

LOAD DATA enabling bulk loads ⬤

Na�ve Parallel Ingest from many data sources (Linux File System,
S3, Azure Blob Store, HDFS, Ka�a)

⬤

Supports most popular formats (CSV, Avro, JSON) ⬤

Load to stored procedures (ELT) ⬤

Pipelines with transform scripts ⬤

CLUSTER OPERATIONS

Zero down�me node management (add/remove) ⬤

Automa�c recovery from node failures ⬤

Rolling produc�on upgrades ⬤

Automated full backup ⬤

Database Replica�on across Geographies to enable disaster
recovery

⬤

Management and Monitoring tools ⬤

Online opera�onal capabili�es (add/remove nodes/re-balance
etc.)

⬤

 31

 Introduc�on to MemSQL

Monitoring UI with Visual Explain plan ⬤

Troubleshoo�ng UI ⬤

Automated Workload management ⬤

SECURITY

Audi�ng ⬤

Strict Mode ⬤

Encryp�on ⬤

RBAC ⬤

Authen�ca�on (GSSAPI/Kerberos) ⬤

ECOSYSTEM

Looker ⬤

Zoomdata ⬤

Tableau ⬤

Streamsets ⬤

SAS Access ⬤

Informa�ca ⬤

Data Virtuality pipes ⬤

Talend ⬤

Power BI ⬤

CLIENT DRIVERS

MariaDB command-line client ⬤

 32

 Introduc�on to MemSQL

MariaDB C/C++ connector ⬤

JDBC ⬤

ODBC ⬤

MySQL Connector ⬤

DBD-MariaDB Perl library ⬤

MySQL Connector/NET (C# and other .NETlanguages) ⬤

 33

