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CHAPTER 1

Analysis with SQL

If you’re reading this book, you’re probably interested in data analysis and in using
SQL to accomplish it. You may be experienced with data analysis but new to SQL, or
perhaps you’re experienced with SQL but new to data analysis. Or you may be new to
both topics entirely. Whatever your starting point, this chapter lays the groundwork
for the topics covered in the rest of the book and makes sure we have a common
vocabulary. I’ll start with a discussion of what data analysis is and then move on to a
discussion of SQL: what it is, why it’s so popular, how it compares to other tools, and
how it fits into data analysis. Then, since modern data analysis is so intertwined with
the technologies that have enabled it, I’ll conclude with a discussion of different types
of databases that you may encounter in your work, why they’re used, and what all of
that means for the SQL you write.

What Is Data Analysis?
Collecting and storing data for analysis is a very human activity. Systems to track
stores of grain, taxes, and the population go back thousands of years, and the roots of
statistics date back hundreds of years. Related disciplines, including statistical process
control, operations research, and cybernetics, exploded in the 20th century. Many dif‐
ferent names are used to describe the discipline of data analysis, such as business
intelligence (BI), analytics, data science, and decision science, and practitioners have
a range of job titles. Data analysis is also done by marketers, product managers, busi‐
ness analysts, and a variety of other people. In this book, I’ll use the terms data ana‐
lyst and data scientist interchangeably to mean the person working with SQL to
understand data. I will refer to the software used to build reports and dashboards as
BI tools.

Data analysis in the contemporary sense was enabled by, and is intertwined with, the
history of computing. Trends in both research and commercialization have shaped it,
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and the story includes a who’s who of researchers and major companies, which we’ll
talk about in the section on SQL. Data analysis blends the power of computing with
techniques from traditional statistics. Data analysis is part data discovery, part data
interpretation, and part data communication. Very often the purpose of data analysis
is to improve decision making, by humans and increasingly by machines through
automation.

Sound methodology is critical, but analysis is about more than just producing the
right number. It’s about curiosity, asking questions, and the “why” behind the num‐
bers. It’s about patterns and anomalies, discovering and interpreting clues about how
businesses and humans behave. Sometimes analysis is done on a data set gathered to
answer a specific question, as in a scientific setting or an online experiment. Analysis
is also done on data that is generated as a result of doing business, as in sales of a
company’s products, or that is generated for analytics purposes, such as user interac‐
tion tracking on websites and mobile apps. This data has a wide range of possible
applications, from troubleshooting to planning user interface (UI) improvements, but
it often arrives in a format and volume such that the data needs processing before
yielding answers. Chapter 2 will cover preparing data for analysis, and Chapter 8 will
discuss some of the ethical and privacy concerns with which all data practitioners
should be familiar.

It’s hard to think of an industry that hasn’t been touched by data analysis: manufac‐
turing, retail, finance, health care, education, and even government have all been
changed by it. Sports teams have employed data analysis since the early years of Billy
Beane’s term as general manager of the Oakland Athletics, made famous by Michael
Lewis’s book Moneyball (Norton). Data analysis is used in marketing, sales, logistics,
product development, user experience design, support centers, human resources, and
more. The combination of techniques, applications, and computing power has led to
the explosion of related fields such as data engineering and data science.

Data analysis is by definition done on historical data, and it’s important to remember
that the past doesn’t necessarily predict the future. The world is dynamic, and organi‐
zations are dynamic as well—new products and processes are introduced, competi‐
tors rise and fall, sociopolitical climates change. Criticisms are leveled against data
analysis for being backward looking. Though that characterization is true, I have seen
organizations gain tremendous value from analyzing historical data. Mining histori‐
cal data helps us understand the characteristics and behavior of customers, suppliers,
and processes. Historical data can help us develop informed estimates and predicted
ranges of outcomes, which will sometimes be wrong but quite often will be right. Past
data can point out gaps, weaknesses, and opportunities. It allows organizations to
optimize, save money, and reduce risk and fraud. It can also help organizations find
opportunity, and it can become the building blocks of new products that delight
customers.
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Organizations that don’t do some form of data analysis are few and
far between these days, but there are still some holdouts. Why do
some organizations not use data analysis? One argument is the
cost-to-value ratio. Collecting, processing, and analyzing data takes
work and some level of financial investment. Some organizations
are too new, or they’re too haphazard. If there isn’t a consistent pro‐
cess, it’s hard to generate data that’s consistent enough to analyze.
Finally, there are ethical considerations. Collecting or storing data
about certain people in certain situations may be regulated or even
banned. Data about children and health-care interventions is sensi‐
tive, for example, and there are extensive regulations around its
collection. Even organizations that are otherwise data driven need
to take care around customer privacy and to think hard about what
data should be collected, why it is needed, and how long it should
be stored. Regulations such as the European Union’s General Data
Protection Regulation, or GDPR, and the California Consumer Pri‐
vacy Act, or CCPA, have changed the way businesses think about
consumer data. We’ll discuss these regulations in more depth in
Chapter 8. As data practitioners, we should always be thinking
about the ethical implications of our work.

When working with organizations, I like to tell people that data analysis is not a
project that wraps up at a fixed date—it’s a way of life. Developing a data-informed
mindset is a process, and reaping the rewards is a journey. Unknowns become
known, difficult questions are chipped away at until there are answers, and the most
critical information is embedded in dashboards that power tactical and strategic deci‐
sions. With this information, new and harder questions are asked, and then the pro‐
cess repeats.

Data analysis is both accessible for those looking to get started and hard to master.
The technology can be learned, particularly SQL. Many problems, such as optimizing
marketing spend or detecting fraud, are familiar and translate across businesses.
Every organization is different and every data set has quirks, so even familiar prob‐
lems can pose new challenges. Communicating results is a skill. Learning to make
good recommendations and becoming a trusted partner to an organization take time.
In my experience, simple analysis presented persuasively has more impact than
sophisticated analysis presented poorly. Successful data analysis also requires partner‐
ship. You can have great insights, but if there is no one to execute on them, you
haven’t really made an impact. Even with all the technology, it’s still about people, and
relationships matter.
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Why SQL?
This section describes what SQL is, the benefits of using it, how it compares to other
languages commonly used for analysis, and finally how SQL fits into the analysis
workflow.

What Is SQL?
SQL is the language used to communicate with databases. The acronym stands for
Structured Query Language and is pronounced either like “sequel” or by saying each
letter, as in “ess cue el.” This is only the first of many controversies and inconsisten‐
cies surrounding SQL that we’ll see, but most people will know what you mean
regardless of how you say it. There is some debate as to whether SQL is or isn’t a pro‐
gramming language. It isn’t a general purpose language in the way that C or Python
are. SQL without a database and data in tables is just a text file. SQL can’t build a web‐
site, but it is powerful for working with data in databases. On a practical level, what
matters most is that SQL can help you get the job of data analysis done.

IBM was the first to develop SQL databases, from the relational model invented by
Edgar Codd in the 1960s. The relational model was a theoretical description for man‐
aging data using relationships. By creating the first databases, IBM helped to advance
the theory, but it also had commercial considerations, as did Oracle, Microsoft, and
every other company that has commercialized a database since. From the beginning,
there has been tension between computer theory and commercial reality. SQL
became an International Organization for Standards (ISO) standard in 1987 and an
American National Standards Institute (ANSI) standard in 1986. Although all major
databases start from these standards in their implementation of SQL, many have var‐
iations and functions that make life easier for the users of those databases. These
come at the cost of making SQL more difficult to move between databases without
some modifications.

SQL is used to access, manipulate, and retrieve data from objects in a database. Data‐
bases can have one or more schemas, which provide the organization and structure
and contain other objects. Within a schema, the objects most commonly used in data
analysis are tables, views, and functions. Tables contain fields, which hold the data.
Tables may have one or more indexes; an index is a special kind of data structure that
allows data to be retrieved more efficiently. Indexes are usually defined by a database
administrator. Views are essentially stored queries that can be referenced in the same
way as a table. Functions allow commonly used sets of calculations or procedures to
be stored and easily referenced in queries. They are usually created by a database
administrator, or DBA. Figure 1-1 gives an overview of the organization of databases.
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Figure 1-1. Overview of database organization and objects in a database

To communicate with databases, SQL has four sublanguages for tackling different
jobs, and these are mostly standard across database types. Most people who work in
data analysis don’t need to recall the names of these sublanguages on a daily basis, but
they might come up in conversation with database administrators or data engineers,
so I’ll briefly introduce them. The commands all work fluidly together, and some may
coexist in the same SQL statement.

DQL, or data query language, is what this book is mainly about. It’s used for querying
data, which you can think of as using code to ask questions of a database. DQL com‐
mands include SELECT, which will be familiar to prior users of SQL, but the acronym
DQL is not frequently used in my experience. SQL queries can be as short as a single
line or span many tens of lines. SQL queries can access a single table (or view), can
combine data from multiple tables through the use of joins, and can also query across
multiple schemas in the same database. SQL queries generally cannot query across
databases, but in some cases clever network settings or additional software can be
used to retrieve data from multiple sources, even databases of different types. SQL
queries are self-contained and, apart from tables, do not reference variables or out‐
puts from previous steps not contained in the query, unlike scripting languages.

DDL, or data definition language, is used to create and modify tables, views, users,
and other objects in the database. It affects the structure but not the contents. There
are three common commands: CREATE, ALTER, and DROP. CREATE is used to
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make new objects. ALTER changes the structure of an object, such as by adding a col‐
umn to a table. DROP deletes the entire object and its structure. You might hear
DBAs and data engineers talk about working with DDLs—this is really just shorthand
for the files or pieces of code that do the creates, alters, or drops. An example of how
DDL is used in the context of analysis is the code to create temporary tables.

DCL, or data control language, is used for access control. Commands include GRANT
and REVOKE, which give permission and remove permission, respectively. In an
analysis context, GRANT might be needed to allow a colleague to query a table you
created. You might also encounter such a command when someone has told you a
table exists in the database but you can’t see it—permissions might need to be
GRANTed to your user.

DML, or data manipulation language, is used to act on the data itself. The commands
are INSERT, UPDATE, and DELETE. INSERT adds new records and is essentially the
“load” step in extract, transform, load (ETL). UPDATE changes values in a field, and
DELETE removes rows. You will encounter these commands if you have any kind of
self-managed tables—temp tables, sandbox tables—or if you find yourself in the role
of both owner and analyzer of the database.

These four sublanguages are present in all major databases. In this book, I’ll focus
mainly on DQL. We will touch on a few DDL and DML commands in Chapter 8, and
you will also see some examples in the GitHub site for the book, where they are used
to create and populate the data used in examples. Thanks to this common set of com‐
mands, SQL code written for any database will look familiar to anyone used to work‐
ing with SQL. However, reading SQL from another database may feel a bit like
listening to someone who speaks the same language as you but comes from another
part of the country or the world. The basic structure of the language is the same, but
the slang is different, and some words have different meanings altogether. Variations
in SQL from database to database are often termed dialects, and database users will
reference Oracle SQL, MSSQL, or other dialects.

Still, once you know SQL, you can work with different database types as long as you
pay attention to details such as the handling of nulls, dates, and timestamps; the divi‐
sion of integers; and case sensitivity.

This book uses PostgreSQL, or Postgres, for the examples, though I will try to point
out where the code would be meaningfully different in other types of databases. You
can install Postgres on a personal computer in order to follow along with the
examples.
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Benefits of SQL
There are many good reasons to use SQL for data analysis, from computing power to
its ubiquity in data analysis tools and its flexibility.

Perhaps the best reason to use SQL is that much of the world’s data is already in data‐
bases. It’s likely your own organization has one or more databases. Even if data is not
already in a database, loading it into one can be worthwhile in order to take advan‐
tage of the storage and computing advantages, especially when compared to alterna‐
tives such as spreadsheets. Computing power has exploded in recent years, and data
warehouses and data infrastructure have evolved to take advantage of it. Some newer
cloud databases allow massive amounts of data to be queried in memory, speeding
things up further. The days of waiting minutes or hours for query results to return
may be over, though analysts may just write more complex queries in response.

SQL is the de facto standard for interacting with databases and retrieving data from
them. A wide range of popular software connects to databases with SQL, from
spreadsheets to BI and visualization tools and coding languages such as Python and R
(discussed in the next section). Due to the computing resources available, performing
as much data manipulation and aggregation as possible in the database often has
advantages downstream. We’ll discuss strategies for building complex data sets for
downstream tools in depth in Chapter 8.

The basic SQL building blocks can be combined in an endless number of ways. Start‐
ing with a relatively small number of building blocks—the syntax—SQL can accom‐
plish a wide array of tasks. SQL can be developed iteratively, and it’s easy to review the
results as you go. It may not be a full-fledged programming language, but it can do
a lot, from transforming data to performing complex calculations and answering
questions.

Last, SQL is relatively easy to learn, with a finite amount of syntax. You can learn the
basic keywords and structure quickly and then hone your craft over time working
with varied data sets. Applications of SQL are virtually infinite, when you take into
account the range of data sets in the world and the possible questions that can be
asked of data. SQL is taught in many universities, and many people pick up some
skills on the job. Even employees who don’t already have SQL skills can be trained,
and the learning curve may be easier than that for other programming languages.
This makes storing data for analysis in relational databases a logical choice for
organizations.
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SQL Versus R or Python
While SQL is a popular language for data analysis, it isn’t the only choice. R and
Python are among the most popular of the other languages used for data analysis. R is
a statistical and graphing language, while Python is a general-purpose programming
language that has strengths in working with data. Both are open source, can be
installed on a laptop, and have active communities developing packages, or exten‐
sions, that tackle various data manipulation and analysis tasks. Choosing between R
and Python is beyond the scope of this book, but there are many discussions online
about the relative advantages of each. Here I will consider them together as coding-
language alternatives to SQL.

One major difference between SQL and other coding languages is where the code
runs and, therefore, how much computing power is available. SQL always runs on a
database server, taking advantage of all its computing resources. For doing analysis, R
and Python are usually run locally on your machine, so computing resources are cap‐
ped by whatever is available locally. There are, of course, lots of exceptions: databases
can run on laptops, and R and Python can be run on servers with more resources.
When you are performing anything other than the simplest analysis on large data
sets, pushing work onto a database server with more resources is a good option. Since
databases are usually set up to continually receive new data, SQL is also a good choice
when a report or dashboard needs to update periodically.

A second difference is in how data is stored and organized. Relational databases
always organize data into rows and columns within tables, so SQL assumes this struc‐
ture for every query. R and Python have a wider variety of ways to store data, includ‐
ing variables, lists, and dictionaries, among other options. These provide more
flexibility, but at the cost of a steeper learning curve. To facilitate data analysis, R has
data frames, which are similar to database tables and organize data into rows and col‐
umns. The pandas package makes DataFrames available in Python. Even when other
options are available, the table structure remains valuable for analysis.

Looping is another major difference between SQL and most other computer pro‐
gramming languages. A loop is an instruction or a set of instructions that repeats until
a specified condition is met. SQL aggregations implicitly loop over the set of data,
without any additional code. We will see later how the lack of ability to loop over
fields can result in lengthy SQL statements when pivoting or unpivoting data. While
deeper discussion is beyond the scope of this book, some vendors have created exten‐
sions to SQL, such as PL/SQL in Oracle and T-SQL in Microsoft SQL Server, that
allow functionality such as looping.
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1 There are some newer technologies that allow SQL queries on data stored in nonrelational sources.

A drawback of SQL is that your data must be in a database,1 whereas R and Python
can import data from files stored locally or can access files stored on servers or web‐
sites. This is convenient for many one-off projects. A database can be installed on a
laptop, but this does add an extra layer of overhead. In the other direction, packages
such as dbplyr for R and SQLAlchemy for Python allow programs written in those
languages to connect to databases, execute SQL queries, and use the results in further
processing steps. In this sense, R or Python can be complementary to SQL.

R and Python both have sophisticated statistical functions that are either built in or
available in packages. Although SQL has, for example, functions to calculate average
and standard deviation, calculations of p-values and statistical significance that are
needed in experiment analysis (discussed in Chapter 7) cannot be performed with
SQL alone. In addition to sophisticated statistics, machine learning is another area
that is better tackled with one of these other coding languages.

When deciding whether to use SQL, R, or Python for an analysis, consider:

• Where is the data located—in a database, a file, a website?
• What is the volume of data?
• Where is the data going—into a report, a visualization, a statistical analysis?
• Will it need to be updated or refreshed with new data? How often?
• What does your team or organization use, and how important is it to conform to

existing standards?

There is no shortage of debate around which languages and tools are best for doing
data analysis or data science. As with many things, there’s often more than one way to
accomplish an analysis. Programming languages evolve and change in popularity,
and we’re lucky to live and work in a time with so many good choices. SQL has been
around for a long time and will likely remain popular for years to come. The ultimate
goal is to use the best available tool for the job. This book will help you get the most
out of SQL for data analysis, regardless of what else is in your toolkit.

SQL as Part of the Data Analysis Workflow
Now that I’ve explained what SQL is, discussed some of its benefits, and compared it
to other languages, we’ll turn to a discussion of where SQL fits in the data analysis
process. Analysis work always starts with a question, which may be about how many
new customers have been acquired, how sales are trending, or why some users stick
around for a long time while others try a service and never return. Once the question
is framed, we consider where the data originated, where the data is stored, the
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analysis plan, and how the results will be presented to the audience. Figure 1-2 shows
the steps in the process. Queries and analysis are the focus of this book, though I will
discuss the other steps briefly in order to put the queries and analysis stage into a
broader context.

Figure 1-2. Steps in the data analysis process

First, data is generated by source systems, a term that includes any human or machine
process that generates data of interest. Data can be generated by people by hand, such
as when someone fills out a form or takes notes during a doctor’s visit. Data can also
be machine generated, such as when an application database records a purchase, an
event-streaming system records a website click, or a marketing management tool
records an email open. Source systems can generate many different types and formats
of data, and Chapter 2 will discuss them, and how the type of source may impact the
analysis, in more detail.

The second step is moving the data and storing it in a database for analysis. I will use
the terms data warehouse, which is a database that consolidates data from across an
organization into a central repository, and data store, which refers to any type of data
storage system that can be queried. Other terms you might come across are data
mart, which is typically a subset of a data warehouse, or a more narrowly focused
data warehouse; and data lake, a term that can mean either that data resides in a file
storage system or that it is stored in a database but without the degree of data trans‐
formation that is common in data warehouses. Data warehouses range from small
and simple to huge and expensive. A database running on a laptop will be sufficient
for you to follow along with the examples in this book. What matters is having the
data you need to perform an analysis together in one place.
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Usually a person or team is responsible for getting data into the
data warehouse. This process is called ETL, or extract, transform,
load. Extract pulls the data from the source system. Transform
optionally changes the structure of the data, performs data quality
cleaning, or aggregates the data. Load puts the data into the data‐
base. This process can also be called ELT, for extract, load, trans‐
form—the difference being that, rather than transformations being
done before data is loaded, all the data is loaded and then transfor‐
mations are performed, usually using SQL. You might also hear the
terms source and target in the context of ETL. The source is where
the data comes from, and the target is the destination, i.e., the data‐
base and the tables within it. Even when SQL is used to do the
transforming, another language such as Python or Java is used to
glue the steps together, coordinate scheduling, and raise alerts
when something goes wrong. There are a number of commercial
products as well as open source tools available, so teams don’t have
to create an ETL system entirely from scratch.

Once the data is in a database, the next step is performing queries and analysis. In
this step, SQL is applied to explore, profile, clean, shape, and analyze the data.
Figure 1-3 shows the general flow of the process. Exploring the data involves becom‐
ing familiar with the topic, where the data was generated, and the database tables in
which it is stored. Profiling involves checking the unique values and distribution of
records in the data set. Cleaning involves fixing incorrect or incomplete data, adding
categorization and flags, and handling null values. Shaping is the process of arranging
the data into the rows and columns needed in the result set. Finally, analyzing the
data involves reviewing the output for trends, conclusions, and insights. Although
this process is shown as linear, in practice it is often cyclical—for example, when
shaping or analysis reveals data that should be cleaned.

Figure 1-3. Stages within the queries and analysis step of the analysis workflow
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Presentation of the data into a final output form is the last step in the overall work‐
flow. Businesspeople won’t appreciate receiving a file of SQL code; they expect you to
present graphs, charts, and insights. Communication is key to having an impact with
analysis, and for that we need a way to share the results with other people. At other
times, you may need to apply more sophisticated statistical analysis than is possible in
SQL, or you may want to feed the data into a machine learning (ML) algorithm. For‐
tunately, most reporting and visualization tools have SQL connectors that allow you
to pull in data from entire tables or prewritten SQL queries. Statistical software and
languages commonly used for ML also usually have SQL connectors.

Analysis workflows encompass a number of steps and often include multiple tools
and technologies. SQL queries and analysis are at the heart of many analyses and are
what we will focus on in the following chapters. Chapter 2 will discuss types of source
systems and the types of data they generate. The rest of this chapter will take a look at
the types of databases you are likely to encounter in your analysis journey.

Database Types and How to Work with Them
If you’re working with SQL, you’ll be working with databases. There is a range of
database types—open source to proprietary, row-store to column-store. There are on-
premises databases and cloud databases, as well as hybrid databases, where an organi‐
zation runs the database software on a cloud vendor’s infrastructure. There are also a
number of data stores that aren’t databases at all but can be queried with SQL.

Databases are not all created equal; each database type has its strengths and weak‐
nesses when it comes to analysis work. Unlike tools used in other parts of the analysis
workflow, you may not have much say in which database technology is used in your
organization. Knowing the ins and outs of the database you have will help you work
more efficiently and take advantage of any special SQL functions it offers. Familiarity
with other types of databases will help you if you find yourself working on a project
to build or migrate to a new data warehouse. You may want to install a database on
your laptop for personal, small-scale projects, or get an instance of a cloud warehouse
for similar reasons.

Databases and data stores have been a dynamic area of technology development since
they were introduced. A few trends since the turn of the 21st century have driven the
technology in ways that are really exciting for data practitioners today. First, data vol‐
umes have increased incredibly with the internet, mobile devices, and the Internet of
Things (IoT). In 2020 IDC predicted that the amount of data stored globally will
grow to 175 zettabytes by 2025. This scale of data is hard to even think about, and not
all of it will be stored in databases for analysis. It’s not uncommon for companies to
have data in the scale of terabytes and petabytes these days, a scale that would have
been impossible to process with the technology of the 1990s and earlier. Second,
decreases in data storage and computing costs, along with the advent of the cloud,
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have made it cheaper and easier for organizations to collect and store these massive
amounts of data. Computer memory has gotten cheaper, meaning that large amounts
of data can be loaded into memory, calculations performed, and results returned, all
without reading and writing to disk, greatly increasing the speed. Third, distributed
computing has allowed the breaking up of workloads across many machines. This
allows a large and tunable amount of computing to be pointed to complex data tasks.

Databases and data stores have combined these technological trends in a number of
different ways in order to optimize for particular types of tasks. There are two broad
categories of databases that are relevant for analysis work: row-store and column-
store. In the next section I’ll introduce them, discuss what makes them similar to and
different from each other, and talk about what all of this means as far as doing analy‐
sis with data stored in them. Finally, I’ll introduce some additional types of data infra‐
structure beyond databases that you may encounter.

Row-Store Databases
Row-store databases—also called transactional databases—are designed to be efficient
at processing transactions: INSERTs, UPDATEs, and DELETEs. Popular open source
row-store databases include MySQL and Postgres. On the commercial side, Microsoft
SQL Server, Oracle, and Teradata are widely used. Although they’re not really opti‐
mized for analysis, for a number of years row-store databases were the only option
for companies building data warehouses. Through careful tuning and schema design,
these databases can be used for analytics. They are also attractive due to the low cost
of open source options and because they’re familiar to the database administrators
who maintain them. Many organizations replicate their production database in the
same technology as a first step toward building out data infrastructure. For all of
these reasons, data analysts and data scientists are likely to work with data in a row-
store database at some point in their career.

We think of a table as rows and columns, but data has to be serialized for storage. A
query searches a hard disk for the needed data. Hard disks are organized in a series of
blocks of a fixed size. Scanning the hard disk takes both time and resources, so mini‐
mizing the amount of the disk that needs to be scanned to return query results is
important. Row-store databases approach this problem by serializing data in a row.
Figure 1-4 shows an example of row-wise data storage. When querying, the whole
row is read into memory. This approach is fast when making row-wise updates, but
it’s slower when making calculations across many rows if only a few columns are
needed.
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Figure 1-4. Row-wise storage, in which each row is stored together on disk

To reduce the width of tables, row-store databases are usually modeled in third nor‐
mal form, which is a database design approach that seeks to store each piece of infor‐
mation only once, to avoid duplication and inconsistencies. This is efficient for
transaction processing but often leads to a large number of tables in the database,
each with only a few columns. To analyze such data, many joins may be required, and
it can be difficult for nondevelopers to understand how all of the tables relate to each
other and where a particular piece of data is stored. When doing analysis, the goal is
usually denormalization, or getting all the data together in one place.

Tables typically have a primary key that enforces uniqueness—in other words, it pre‐
vents the database from creating more than one record for the same thing. Tables will
often have an id column that is an auto-incrementing integer, where each new record
gets the next integer after the last one inserted, or an alphanumeric value that is
created by a primary key generator. There should also be a set of columns that
together make the row unique; this combination of fields is called a composite key,
or sometimes a business key. For example, in a table of people, the columns
first_name, last_name, and birthdate together might make the row unique.
Social_security_id would also be a unique identifier, in addition to the table’s
person_id column.

Tables also optionally have indexes that make looking up specific records faster and
make joins involving these columns faster. Indexes store the values in the field or
fields indexed as single pieces of data along with a row pointer, and since the indexes
are smaller than the whole table, they are faster to scan. Usually the primary key is
indexed, but other fields or groups of fields can be indexed as well. When working
with row-store databases, it’s useful to get to know which fields in the tables you use
have indexes. Common joins can be sped up by adding indexes, so it’s worth investi‐
gating whether analysis queries take a long time to run. Indexes don’t come for free:
they take up storage space, and they slow down loading, as new values need to be
added with each insert. DBAs may not index everything that might be useful for anal‐
ysis. Beyond reporting, analysis work may not be routine enough to bother with opti‐
mizing indexes either. Exploratory and complex queries often use complex join
patterns, and we may throw out one approach when we figure out a new way to solve
a problem.

Star schema modeling was developed in part to make row-store databases more
friendly to analytic workloads. The foundations are laid out in the book The Data
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2 Ralph Kimball and Margy Ross, The Data Warehouse Toolkit, 3rd ed. (Indianapolis: Wiley, 2013).

Warehouse Toolkit,2 which advocates modeling the data as a series of fact and dimen‐
sion tables. Fact tables represent events, such as retail store transactions. Dimensions
hold descriptors such as customer name and product type. Since data doesn’t always
fit neatly into fact and dimension categories, there’s an extension called the snowflake
schema in which some dimensions have dimensions of their own.

Column-Store Databases
Column-store databases took off in the early part of the 21st century, though their the‐
oretical history goes back as far as that of row-store databases. Column-store data‐
bases store the values of a column together, rather than storing the values of a row
together. This design is optimized for queries that read many records but not neces‐
sarily all the columns. Popular column-store databases include Amazon Redshift,
Snowflake, and Vertica.

Column-store databases are efficient at storing large volumes of data thanks to com‐
pression. Missing values and repeating values can be represented by very small
marker values instead of the full value. For example, rather than storing “United
Kingdom” thousands or millions of times, a column-store database will store a surro‐
gate value that takes up very little storage space, along with a lookup that stores the
full “United Kingdom” value. Column-store databases also compress data by taking
advantage of repetitions of values in sorted data. For example, the database can store
the fact that the marker value for “United Kingdom” is repeated 100 times, and this
takes up even less space than storing that marker 100 times.

Column-store databases do not enforce primary keys and do not have indexes.
Repeated values are not problematic, thanks to compression. As a result, schemas can
be tailored for analysis queries, with all the data together in one place as opposed to
being in multiple tables that need to be joined. Duplicate data can easily sneak in
without primary keys, however, so understanding the source of the data and quality
checking are important.

Updates and deletes are expensive in most column-store databases, since data for a
single row is distributed rather than stored together. For very large tables, a write-
only policy may exist, so we also need to know something about how the data is gen‐
erated in order to figure out which records to use. The data can also be slower to read,
as it needs to be uncompressed before calculations are applied.

Column-store databases are generally the gold standard for fast analysis work. They
use standard SQL (with some vendor-specific variations), and in many ways working
with them is no different from working with a row-store database in terms of the
queries you write. The size of the data matters, as do the computing and storage
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resources that have been allocated to the database. I have seen aggregations run across
millions and billions of records in seconds. This does wonders for productivity.

There are a few tricks to be aware of. Since certain types of com‐
pression rely on sorting, knowing the fields that the table is sorted
on and using them to filter queries improves performance. Joining
tables can be slow if both tables are large.

At the end of the day, some databases will be easier or faster to work with, but there is
nothing inherent in the type of database that will prevent you from performing any of
the analysis in this book. As with all things, using a tool that’s properly powerful for
the volume of data and complexity of the task will allow you to focus on creating
meaningful analysis.

Other Types of Data Infrastructure
Databases aren’t the only way data can be stored, and there is an increasing variety of
options for storing data needed for analysis and powering applications. File storage
systems, sometimes called data lakes, are probably the main alternative to database
warehouses. NoSQL databases and search-based data stores are alternative data stor‐
age systems that offer low latency for application development and searching log files.
Although not typically part of the analysis process, they are increasingly part of
organizations’ data infrastructure, so I will introduce them briefly in this section as
well. One interesting trend to point out is that although these newer types of infra‐
structure at first aimed to break away from the confines of SQL databases, many have
ended up implementing some kind of SQL interface to query the data.

Hadoop, also known as HDFS (for “Hadoop distributed filesystem”), is an open
source file storage system that takes advantage of the ever-falling cost of data storage
and computing power, as well as distributed systems. Files are split into blocks, and
Hadoop distributes them across a filesystem that is stored on nodes, or computers, in
a cluster. The code to run operations is sent to the nodes, and they process the data in
parallel. Hadoop’s big breakthrough was to allow huge amounts of data to be stored
cheaply. Many large internet companies, with massive amounts of often unstructured
data, found this to be an advantage over the cost and storage limitations of traditional
databases. Hadoop’s early versions had two major downsides: specialized coding skills
were needed to retrieve and process data since it was not SQL compatible, and execu‐
tion time for the programs was often quite long. Hadoop has since matured, and vari‐
ous tools have been developed that allow SQL or SQL-like access to the data and
speed up query times.
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Other commercial and open source products have been introduced in the last few
years to take advantage of cheap data storage and fast, often in-memory data process‐
ing, while offering SQL querying ability. Some of them even permit the analyst to
write a single query that returns data from multiple underlying sources. This is excit‐
ing for anyone who works with large amounts of data, and it is validation that SQL is
here to stay.

NoSQL is a technology that allows for data modeling that is not strictly relational. It
allows for very low latency storage and retrieval, critical in many online applications. 
The class includes key-value pair storage and graph databases, which store in a node-
edge format, and document stores. Examples of these data stores that you might hear
about in your organization are Cassandra, Couchbase, DynamoDB, Memcached, Gir‐
aph, and Neo4j. Early on, NoSQL was marketed as making SQL obsolete, but the
acronym has more recently been marketed as “not only SQL.” For analysis purposes,
using data stored in a NoSQL key-value store for analysis typically requires moving it
to a more traditional SQL data warehouse, since NoSQL is not optimized for query‐
ing many records at once. Graph databases have applications such as network analy‐
sis, and analysis work may be done directly in them with special query languages. The
tool landscape is always evolving, however, and perhaps someday we’ll be able to ana‐
lyze this data with SQL as well.

Search-based data stores include Elasticsearch and Splunk. Elasticsearch and Splunk
are often used to analyze machine-generated data, such as logs. These and similar
technologies have non-SQL query languages, but if you know SQL, you can often
understand them. Recognizing how common SQL skills are, some data stores, such as
Elasticsearch, have added SQL querying interfaces. These tools are useful and power‐
ful for the use cases they were designed for, but they’re usually not well suited to the
types of analysis tasks this book is covering. As I’ve explained to people over the
years, they are great for finding needles in haystacks. They’re not as great at measur‐
ing the haystack itself.

Regardless of the type of database or other data storage technology, the trend is clear:
even as data volumes grow and use cases become more complex, SQL is still the stan‐
dard tool for accessing data. Its large existing user base, approachable learning curve,
and power for analytical tasks mean that even technologies that try to move away
from SQL come back around and accommodate it.

Conclusion
Data analysis is an exciting discipline with a range of applications for businesses and
other organizations. SQL has many benefits for working with data, particularly any
data stored in a database. Querying and analyzing data is part of the larger analysis
workflow, and there are several types of data stores that a data scientist might expect
to work with. Now that we’ve set the groundwork for analysis, SQL, and data stores,
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the rest of the book will cover using SQL for analysis in depth. Chapter 2 focuses on
data preparation, starting with an introduction to data types and then moving on to
profiling, cleaning, and shaping data. Chapters 3 through 7 present applications of
data analysis, focusing on time series analysis, cohort analysis, text analysis, anomaly
detection, and experiment analysis. Chapter 8 covers techniques for developing com‐
plex data sets for further analysis in other tools. Finally, Chapter 9 concludes with
thoughts on how types of analysis can be combined for new insights and lists some
additional resources to support your analytics journey.
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CHAPTER 2

Preparing Data for Analysis

Estimates of how long data scientists spend preparing their data vary, but it’s safe to
say that this step takes up a significant part of the time spent working with data. In
2014, the New York Times reported that data scientists spend from 50% to 80% of
their time cleaning and wrangling their data. A 2016 survey by CrowdFlower found
that data scientists spend 60% of their time cleaning and organizing data in order to
prepare it for analysis or modeling work. Preparing data is such a common task that
terms have sprung up to describe it, such as data munging, data wrangling, and data
prep. (“Mung” is an acronym for Mash Until No Good, which I have certainly done
on occasion.) Is all this data preparation work just mindless toil, or is it an important
part of the process?

Data preparation is easier when a data set has a data dictionary, a document or repos‐
itory that has clear descriptions of the fields, possible values, how the data was collec‐
ted, and how it relates to other data. Unfortunately, this is frequently not the case.
Documentation often isn’t prioritized, even by people who see its value, or it becomes
out-of-date as new fields and tables are added or the way data is populated changes.
Data profiling creates many of the elements of a data dictionary, so if your organiza‐
tion already has a data dictionary, this is a good time to use it and contribute to it. If
no data dictionary exists currently, consider starting one! This is one of the most val‐
uable gifts you can give to your team and to your future self. An up-to-date data dic‐
tionary allows you to speed up the data-profiling process by building on profiling
that’s already been done rather than replicating it. It will also improve the quality of
your analysis results, since you can verify that you have used fields correctly and
applied appropriate filters.

Even when a data dictionary exists, you will still likely need to do data prep work as
part of the analysis. In this chapter, I’ll start with a review of data types you are likely
to encounter. This is followed by a review of SQL query structure. Next, I will talk
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about profiling the data as a way to get to know its contents and check for data qual‐
ity. Then I’ll talk about some data-shaping techniques that will return the columns
and rows needed for further analysis. Finally, I’ll walk through some useful tools for
cleaning data to deal with any quality issues.

Types of Data
Data is the foundation of analysis, and all data has a database data type and also
belongs to one or more categories of data. Having a firm grasp of the many forms
data can take will help you be a more effective data analyst. I’ll start with the database
data types most frequently encountered in analysis. Then I’ll move on to some con‐
ceptual groupings that can help us understand the source, quality, and possible appli‐
cations of the data.

Database Data Types
Fields in database tables all have defined data types. Most databases have good docu‐
mentation on the types they support, and this is a good resource for any needed detail
beyond what is presented here. You don’t necessarily need to be an expert on the
nuances of data types to be good at analysis, but later in the book we’ll encounter sit‐
uations in which considering the data type is important, so this section will cover the
basics. The main types of data are strings, numeric, logical, and datetime, as summar‐
ized in Table 2-1. These are based on Postgres but are similar across most major data‐
base types.

Table 2-1. A summary of common database data types

Type Name Description
String CHAR / VARCHAR Holds strings. A CHAR is always of fixed length, whereas a VARCHAR is of variable length, up

to some maximum size (256 characters, for example).
 TEXT / BLOB Holds longer strings that don’t fit in a VARCHAR. Descriptions or free text entered by survey

respondents might be held in these fields.
Numeric INT / SMALLINT /

BIGINT
Holds integers (whole numbers). Some databases have SMALLINT and/or BIGINT. SMALLINT
can be used when the field will only hold values with a small number of digits. SMALLINT
takes less memory than a regular INT. BIGINT is capable of holding numbers with more digits
than an INT, but it takes up more space than an INT.

 FLOAT / DOUBLE /
DECIMAL

Holds decimal numbers, sometimes with the number of decimal places specified.

Logical BOOLEAN Holds values of TRUE or FALSE.
 DATETIME /

TIMESTAMP
Holds dates with times. Typically in a YYYY-MM-DD hh:mi:ss format, where YYYY is the four-
digit year, MM is the two-digit month number, DD is the two-digit day, hh is the two-digit
hour (usually 24-hour time, or values of 0 to 23), mi is the two-digit minutes, and ss is the
two-digit seconds. Some databases store only timestamps without time zone, while others
have specific types for timestamps with and without time zones.

 TIME Holds times.
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String data types are the most versatile. These can hold letters, numbers, and special
characters, including unprintable characters like tabs and newlines. String fields can
be defined to hold a fixed or variable number of characters. A CHAR field could be
defined to allow only two characters to hold US state abbreviations, for example,
whereas a field storing the full names of states would need to be a VARCHAR to allow
a variable number of characters. Fields can be defined as TEXT, CLOB (Character
Large Object), or BLOB (Binary Large Object, which can include additional data
types such as images), depending on the database to hold very long strings, though
since they often take up a lot of space, these data types tend to be used sparingly.
When data is loaded, if strings arrive that are too big for the defined data type, they
may be truncated or rejected entirely. SQL has a number of string functions that we
will make use of for various analysis purposes.

Numeric data types are all the ones that store numbers, both positive and negative.
Mathematical functions and operators can be applied to numeric fields. Numeric data
types include the INT types as well as FLOAT, DOUBLE, and DECIMAL types that
allow decimal places. Integer data types are often implemented because they use less
memory than their decimal counterparts. In some databases, such as Postgres, divid‐
ing integers results in an integer, rather than a value with decimal places as you might
expect. We’ll discuss converting numeric data types to obtain correct results later in
this chapter.

The logical data type is called BOOLEAN. It has values of TRUE and FALSE and is an
efficient way to store information where these options are appropriate. Operations
that compare two fields return a BOOLEAN value as a result. This data type is often
used to create flags, fields that summarize the presence or absence of a property in the
data. For example, a table storing email data might have a BOOLEAN has_opened
field.

The datetime types include DATE, TIMESTAMP, and TIME. Date and time data
should be stored in a field of one of these database types whenever possible, since
SQL has a number of useful functions that operate on them. Timestamps and dates
are very common in databases and are critical to many types of analysis, particularly
time series analysis (covered in Chapter 3) and cohort analysis (covered in Chapter
4). Chapter 3 will discuss date and time formatting, transformations, and calculations.

Other data types, such as JSON and geographical types, are supported by some but
not all databases. I won’t go into detail on all of them here since they are generally
beyond the scope of this book. However, they are a sign that SQL continues to evolve
to tackle emerging analysis tasks.

Beyond database data types, there are a number of conceptual ways that data is cate‐
gorized. These can have an impact both on how data is stored and on how we think
about analyzing it. I will discuss these categorical data types next.
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Structured Versus Unstructured
Data is often described as structured or unstructured, or sometimes as semistruc‐
tured. Most databases were designed to handle structured data, where each attribute is
stored in a column, and instances of each entity are represented as rows. A data
model is first created, and then data is inserted according to that data model. For
example, an address table might have fields for street address, city, state, and postal
code. Each row would hold a particular customer’s address. Each field has a data type
and allows only data of that type to be entered. When structured data is inserted into
a table, each field is verified to ensure it conforms to the correct data type. Structured
data is easy to query with SQL.

Unstructured data is the opposite of structured data. There is no predetermined struc‐
ture, data model, or data types. Unstructured data is often the “everything else” that
isn’t database data. Documents, emails, and web pages are unstructured. Photos,
images, videos, and audio files are also examples of unstructured data. They don’t fit
into the traditional data types, and thus they are more difficult for relational data‐
bases to store efficiently and for SQL to query. Unstructured data is often stored out‐
side of relational databases as a result. This allows data to be loaded quickly, but lack
of data validation can result in low data quality. As we saw in Chapter 1, the technol‐
ogy continues to evolve, and new tools are being developed to allow SQL querying of
many types of unstructured data.

Semistructured data falls in between these two categories. Much “unstructured” data
has some structure that we can make use of. For example, emails have from and to
email addresses, subject lines, body text, and sent timestamps that can be stored sepa‐
rately in a data model with those fields. Metadata, or data about data, can be extracted
from other file types and stored for analysis. For example, music audio files might be
tagged with artist, song name, genre, and duration. Generally, the structured parts of
semistructured data can be queried with SQL, and SQL can often be used to parse or
otherwise extract structured data for further querying. We’ll see some applications of
this in the discussion of text analysis in Chapter 5.

Quantitative Versus Qualitative Data
Quantitative data is numeric. It measures people, things, and events. Quantitative
data can include descriptors, such as customer information, product type, or device
configurations, but it also comes with numeric information such as price, quantity, or
visit duration. Counts, sums, average, or other numeric functions are applied to the
data. Quantitative data is often machine generated these days, but it doesn’t need to
be. Height, weight, and blood pressure recorded on a paper patient intake form are
quantitative, as are student quiz scores typed into a spreadsheet by a teacher.
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Qualitative data is usually text based and includes opinions, feelings, and descriptions
that aren’t strictly quantitative. Temperature and humidity levels are quantitative,
while descriptors like “hot and humid” are qualitative. The price a customer paid for
a product is quantitative; whether they like or dislike it is qualitative. Survey feed‐
back, customer support inquiries, and social media posts are qualitative. There are
whole professions that deal with qualitative data. In a data analysis context, we usu‐
ally try to quantify the qualitative. One technique for this is to extract keywords or
phrases and count their occurrences. We’ll look at this in more detail when we delve
into text analysis in Chapter 5. Another technique is sentiment analysis, in which the
structure of language is used to interpret the meaning of the words used, in addition
to their frequency. Sentences or other bodies of text can be scored for their level of
positivity or negativity, and then counts or averages are used to derive insights that
would be hard to summarize otherwise. There have been exciting advances in the
field of natural language processing, or NLP, though much of this work is done with
tools such as Python.

First-, Second-, and Third-Party Data
First-party data is collected by the organization itself. This can be done through
server logs, databases that keep track of transactions and customer information, or
other systems that are built and controlled by the organization and generate data of
interest for analysis. Since the systems were created in-house, finding the people who
built them and learning about how the data is generated is usually possible. Data ana‐
lysts may also be able to influence or have control over how certain pieces of data are
created and stored, particularly when bugs are responsible for poor data quality.

Second-party data comes from vendors that provide a service or perform a business
function on the organization’s behalf. These are often software as a service (SaaS)
products; common examples are CRM, email and marketing automation tools,
ecommerce-enabling software, and web and mobile interaction trackers. The data is
similar to first-party data since it is about the organization itself, created by its
employees and customers. However, both the code that generates and stores the data
and the data model are controlled externally, and the data analyst typically has little
influence over these aspects. Second-party data is increasingly imported into an
organization’s data warehouse for analysis. This can be accomplished with custom
code or ETL connectors, or with SaaS vendors that offer data integration.
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Many SaaS vendors provide some reporting capabilities, so the
question may arise of whether to bother copying the data to a data
warehouse. The department that interacts with a tool may find that
reporting sufficient, such as a customer service department that
reports on time to resolve issues and agent productivity from
within its helpdesk software. On the other hand, customer service
interactions might be an important input to a customer retention
model, which would require integrating that data into a data store
with sales and cancellation data. Here’s a good rule of thumb when
deciding whether to import data from a particular data source: if
the data will create value when combined with data from other sys‐
tems, import it; if not, wait until there is a stronger case before
doing the work.

Third-party data may be purchased or obtained from free sources such as those pub‐
lished by governments. Unless the data has been collected specifically on behalf of the
organization, data teams usually have little control over the format, frequency, and
data quality. This data often lacks the granularity of first- and second-party data. For
example, most third-party sources do not have user-level data, and instead data might
be joined with first-party data at the postal code or city level, or at a higher level.
Third-party data can have unique and useful information, however, such as aggregate
spending patterns, demographics, and market trends that would be very expensive or
impossible to collect otherwise.

Sparse Data
Sparse data occurs when there is a small amount of information within a larger set of
empty or unimportant information. Sparse data might show up as many nulls and
only a few values in a particular column. Null, different from a value of 0, is the
absence of data; that will be covered later in the section on data cleaning. Sparse data
can occur when events are rare, such as software errors or purchases of products in
the long tail of a product catalog. It can also occur in the early days of a feature or
product launch, when only testers or beta customers have access. JSON is one
approach that has been developed to deal with sparse data from a writing and storage
perspective, as it stores only the data that is present and omits the rest. This is in con‐
trast to a row-store database, which has to hold memory for a field even if there is no
value in it.

Sparse data can be problematic for analysis. When events are rare, trends aren’t nec‐
essarily meaningful, and correlations are hard to distinguish from chance fluctua‐
tions. It’s worth profiling your data, as discussed later in this chapter, to understand if
and where your data is sparse. Some options are to group infrequent events or items
into categories that are more common, exclude the sparse data or time period from
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the analysis entirely, or show descriptive statistics along with cautionary explanations
that the trends are not necessarily meaningful.

There are a number of different types of data and a variety of ways that data is
described, many of which are overlapping or not mutually exclusive. Familiarity with
these types is useful not only in writing good SQL but also for deciding how to ana‐
lyze the data in appropriate ways. You may not always know the data types in
advance, which is why data profiling is so critical. Before we get to that, and to our
first code examples, I’ll give a brief review of SQL query structure.

SQL Query Structure
SQL queries have common clauses and syntax, although these can be combined in a
nearly infinite number of ways to achieve analysis goals. This book assumes you have
some prior knowledge of SQL, but I’ll review the basics here so that we have a com‐
mon foundation for the code examples to come.

The SELECT clause determines the columns that will be returned by the query. One
column will be returned for each expression within the SELECT clause, and expres‐
sions are separated by commas. An expression can be a field from the table, an aggre‐
gation such as a sum, or any number of calculations, such as CASE statements, type
conversions, and various functions that will be discussed later in this chapter and
throughout the book.

The FROM clause determines the tables from which the expressions in the SELECT
clause are derived. A “table” can be a database table, a view (a type of saved query that
otherwise functions like a table), or a subquery. A subquery is itself a query, wrapped
in parentheses, and the result is treated like any other table by the query that refer‐
ences it. A query can reference multiple tables in the FROM clause, though they must
use one of the JOIN types along with a condition that specifies how the tables relate.
The JOIN condition usually specifies an equality between fields in each table, such as
orders.customer_id = customers.customer_id. JOIN conditions can include mul‐
tiple fields and can also specify inequalities or ranges of values, such as ranges of
dates. We’ll see a variety of JOIN conditions that achieve specific analysis goals
throughout the book. An INNER JOIN returns all records that match in both tables.
A LEFT JOIN returns all records from the first table, but only those records from the
second table that match. A RIGHT JOIN returns all records from the second table,
but only those records from the first table that match. A FULL OUTER JOIN returns
all records from both tables. A Cartesian JOIN can result when each record in the first
table matches more than one record in the second table. Cartesian JOINs should gen‐
erally be avoided, though there are some specific use cases, such as generating data to
fill in a time series, in which we will use them intentionally. Finally, tables in the
FROM clause can be aliased, or given a shorter name of one or more letters that can
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be referenced in other clauses in the query. Aliases save query writers from having to
type out long table names repeatedly, and they make queries easier to read.

While both LEFT JOIN and RIGHT JOIN can be used in the same
query, it’s much easier to keep track of your logic when you stick
with only one or the other. In practice, LEFT JOIN is much more
commonly used than RIGHT JOIN.

The WHERE clause specifies restrictions or filters that are needed to exclude or
remove rows from the result set. WHERE is optional.

The GROUP BY clause is required when the SELECT clause contains aggregations
and at least one nonaggregated field. An easy way to remember what should go in the
GROUP BY clause is that it should have every field that is not part of an aggregation. 
In most databases, there are two ways to list the GROUP BY fields: either by field
name or by position, such as 1, 2, 3, and so on. Some people prefer to use the field
name notation, and SQL Server requires this. I prefer the position notation, particu‐
larly when the GROUP BY fields contain complex expressions or when I’m doing a lot
of iteration. This book will typically use the position notation.

How Not to Kill Your Database: LIMIT and Sampling
Database tables can be very large, containing millions or billions of records. Querying
across all of these records can cause problems at the least and crash databases at the
worst. To avoid receiving cranky calls from database administrators or getting locked
out, it’s a good idea to limit the results returned during profiling or while testing
queries. LIMIT clauses and sampling are two techniques that should be part of your
toolbox.

LIMIT is added as the last line of the query, or subquery, and can take any positive
integer value:

SELECT column_a, column_b
FROM table
LIMIT 1000
;

When used in a subquery, the limit will be applied at that step, and only the restricted
result set will be evaluated by the outer query:

SELECT...
FROM
(
      SELECT column_a, column_b, sum(sales) as total_sales
      FROM table
      GROUP BY 1,2
      LIMIT 1000
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) a
;

SQL Server does not support the LIMIT clause, but a similar result can be obtained
using top:

SELECT top 1000
column_a, column_b
FROM table
;

Sampling can be accomplished by using a function on an ID field that has a random
distribution of digits at the beginning or end. The modulus or mod function returns
the remainder when one integer is divided by another. If the ID field is an integer, mod
can be used to find the last one, two, or more digits and filter on the result:

WHERE mod(integer_order_id,100) = 6

This will return every order whose last two digits are 06, which should be about 1% of
the total. If the field is alphanumeric, you can use a right() function to find a certain
number of digits at the end:

WHERE right(alphanum_order_id,1) = 'B'

This will return every order with a last digit of B, which will be about 3% of the total if
all letters and numbers are equally common, an assumption worth validating.

Limiting the result set also makes your work faster, but be aware that subsets of data
might not contain all of the variations in values and edge cases that exist in the full
data set. Remember to remove the LIMIT or sampling before running your final anal‐
ysis or report with your query, or you’ll end up with funny results!

That covers the basics of SQL query structure. Chapter 8 will go into additional detail
on each of these clauses, a few additional ones that are less commonly encountered
but appear in this book, and the order in which each clause is evaluated. Now that we
have this foundation, we can turn to one of the most important parts of the analysis
process: data profiling.

Profiling: Distributions
Profiling is the first thing I do when I start working with any new data set. I look at
how the data is arranged into schemas and tables. I look at the table names to get
familiar with the topics covered, such as customers, orders, or visits. I check out the
column names in a few tables and start to construct a mental model of how the tables
relate to one another. For example, the tables might include an order_detail table
with line-item breakouts that relate to the order table via an order_id, while the
order table relates to the customer table via a customer_id. If there is a data dictio‐
nary, I review that and compare it to the data I see in a sample of rows.
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1 John W. Tukey, Exploratory Data Analysis (Reading, MA: Addison-Wesley, 1977).

The tables generally represent the operations of an organization, or some subset of
the operations, so I think about what domain or domains are covered, such as ecom‐
merce, marketing, or product interactions. Working with data is easier when we have
knowledge of how the data was generated. Profiling can provide clues about this, or
about what questions to ask of the source, or of people inside or outside the organiza‐
tion responsible for the collection or generation of the data. Even when you collect
the data yourself, profiling is useful.

Another detail I check for is how history is represented, if at all. Data sets that are
replicas of production databases may not contain previous values for customer
addresses or order statuses, for example, whereas a well-constructed data warehouse
may have daily snapshots of changing data fields.

Profiling data is related to the concept of exploratory data analysis, or EDA, named by
John Tukey. In his book of that name,1 Tukey describes how to analyze data sets by
computing various summaries and visualizing the results. He includes techniques for
looking at distributions of data, including stem-and-leaf plots, box plots, and
histograms.

After checking a few samples of data, I start looking at distributions. Distributions
allow me to understand the range of values that exist in the data and how often they
occur, whether there are nulls, and whether negative values exist alongside positive
ones. Distributions can be created with continuous or categorical data and are also
called frequencies. In this section, we’ll look at how to create histograms, how bin‐
ning can help us understand the distribution of continuous values, and how to use
n-tiles to get more precise about distributions.

Histograms and Frequencies
One of the best ways to get to know a data set, and to know particular fields within
the data set, is to check the frequency of values in each field. Frequency checks are
also useful whenever you have a question about whether certain values are possible or
if you spot an unexpected value and want to know how commonly it occurs. Fre‐
quency checks can be done on any data type, including strings, numerics, dates, and
booleans. Frequency queries are a great way to detect sparse data as well.

The query is straightforward. The number of rows can be found with count(*), and
the profiled field is in the GROUP BY. For example, we can check the frequency of
each type of fruit in a fictional fruit_inventory table:
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SELECT fruit, count(*) as quantity
FROM fruit_inventory
GROUP BY 1
;

When using count, it’s worth taking a minute to consider whether
there might be any duplicate records in the data set. You can use
count(*) when you want the number of records, but use count
distinct to find out how many unique items there are.

A frequency plot is a way to visualize the number of times something occurs in the
data set. The field being profiled is usually plotted on the x-axis, with the count of
observations on the y-axis. Figure 2-1 shows an example of plotting the frequency of
fruit from our query. Frequency graphs can also be drawn horizontally, which accom‐
modates long value names well. Notice that this is categorical data without any inher‐
ent order.

Figure 2-1. Frequency plot of fruit inventory

A histogram is a way to visualize the distribution of numerical values in a data set and
will be familiar to those with a statistics background. A basic histogram might show
the distribution of ages across a group of customers. Imagine that we have a custom
ers table that contains names, registration date, age, and other attributes. To create a
histogram by age, GROUP BY the numerical age field and count customer_id:
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SELECT age, count(customer_id) as customers
FROM customers
GROUP BY 1 
;

The results of our hypothetical age distribution are graphed in Figure 2-2.

Figure 2-2. Customers by age

Another technique I’ve used repeatedly and that has become the basis for one of my
favorite interview questions involves an aggregation followed by a frequency count. I
give candidates a hypothetical table called orders, which has a date, customer identi‐
fier, order identifier, and an amount, and then ask them to write a SQL query that
returns the distribution of orders per customer. This can’t be solved with a simple
query; it requires an intermediate aggregation step, which can be accomplished with a
subquery. First, count the number of orders placed by each customer_id in the sub‐
query. The outer query uses the number of orders as a category and counts the num‐
ber of customers:

SELECT orders, count(*) as num_customers
FROM
(
    SELECT customer_id, count(order_id) as orders
    FROM orders
    GROUP BY 1
) a
GROUP BY 1
;
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This type of profiling can be applied whenever you need to see how frequently certain
entities or attributes appear in the data. In these examples, count has been used, but
the other basic aggregations (sum, avg, min, and max) can be used to create histograms
as well. For instance, we might want to profile customers by the sum of all their
orders, their avg order size, their min order date, or their max (most recent) order
date.

Binning
Binning is useful when working with continuous values. Rather than the number of
observations or records for each value being counted, ranges of values are grouped
together, and these groups are called bins or buckets. The number of records that fall
into each interval is then counted. Bins can be variable in size or have a fixed size,
depending on whether your goal is to group the data into bins that have particular
meaning for the organization, are roughly equal width, or contain roughly equal
numbers of records. Bins can be created with CASE statements, rounding, and
logarithms.

A CASE statement allows for conditional logic to be evaluated. These statements are
very flexible, and we will come back to them throughout the book, applying them to
data profiling, cleaning, text analysis, and more. The basic structure of a CASE state‐
ment is:

case when condition1 then return_value_1
     when condition2 then return_value_2
     ...
     else return_value_default
     end

The WHEN condition can be an equality, inequality, or other logical condition. The
THEN return value can be a constant, an expression, or a field in the table. Any num‐
ber of conditions can be included, but the statement will stop executing and return
the result the first time a condition evaluates to TRUE. ELSE tells the database what
to use as a default value if no matches are found and can also be a constant or field. 
ELSE is optional, and if it is not included, any nonmatches will return null. CASE
statements can also be nested so that the return value is another CASE statement.

The return values following THEN must all be the same data type
(strings, numeric, BOOLEAN, etc.), or else you’ll get an error.
Consider casting to a common data type such as string if you
encounter this.

A CASE statement is a flexible way to control the number of bins, the range of values
that fall into each bin, and how the bins are named. I find them particularly useful
when there is a long tail of very small or very large values that I want to group
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together rather than have empty bins in part of the distribution. Certain ranges of
values have a business meaning that needs to be re-created in the data. Many B2B
companies separate their customers into “enterprise” and “SMB” (small- and
medium-sized businesses) categories based on number of employees or revenue,
because their buying patterns are different. As an example, imagine we are consider‐
ing discounted shipping offers and we want to know how many customers will be
affected. We can group order_amount into three buckets using a CASE statement:

SELECT 
case when order_amount <= 100 then 'up to 100'
     when order_amount <= 500 then '100 - 500'
     else '500+' end as amount_bin
,case when order_amount <= 100 then 'small'
      when order_amount <= 500 then 'medium'
      else 'large' end as amount_category
,count(customer_id) as customers
FROM orders
GROUP BY 1,2
;

Arbitrary-sized bins can be useful, but at other times bins of fixed size are more
appropriate for the analysis. Fixed-size bins can be accomplished in a few ways,
including with rounding, logarithms, and n-tiles. To create equal-width bins, round‐
ing is useful. Rounding reduces the precision of the values, and we usually think
about rounding as reducing the number of decimal places or removing them alto‐
gether by rounding to the nearest integer. The round function takes the form:

round(value,number_of_decimal_places)

The number of decimal places can also be a negative number, allowing this function
to round to the nearest tens, hundreds, thousands, and so on. Table 2-2 demonstrates
the results of rounding with arguments ranging from –3 to 2.

Table 2-2. The number 123,456.789 rounded with various decimal places

Decimal places Formula Result
2 round(123456.789,2) 123456.79
1 round(123456.789,1) 123456.8
0 round(123456.789,0) 123457
-1 round(123456.789,-1) 123460
-2 round(123456.789,-2) 123500
-3 round(123456.789,-3) 123000

SELECT round(sales,-1) as bin
,count(customer_id) as customers
FROM table
GROUP BY 1
;
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Logarithms are another way to create bins, particularly in data sets in which the larg‐
est values are orders of magnitude greater than the smallest values. The distribution
of household wealth, the number of website visitors across different properties on the
internet, and the shaking force of earthquakes are all examples of phenomena that
have this property. While they don’t create bins of equal width, logarithms create bins
that increase in size with a useful pattern. To refresh your memory, a logarithm is the
exponent to which 10 must be raised to produce that number:

log(number) = exponent

In this case, 10 is called the base, and this is usually the default implementation in
databases, but technically the base can be any number. Table 2-3 shows the loga‐
rithms for several powers of 10.

Table 2-3. Results of log function on powers of 10

Formula Result
log(1) 0
log(10) 1
log(100) 2
log(1000) 3
log(10000) 4

In SQL, the log function returns the logarithm of its argument, which can be a con‐
stant or a field:

SELECT log(sales) as bin
,count(customer_id) as customers
FROM table
GROUP BY 1
;

The log function can be used on any positive value, not just multiples of 10. How‐
ever, the logarithm function does not work when values can be less than or equal to 0;
it will return null or an error, depending on the database.

n-Tiles
You’re probably familiar with the median, or middle value, of a data set. This is the
50th percentile value. Half of the values are larger than the median, and the other half
are smaller. With quartiles, we fill in the 25th and 75th percentile values. A quarter of
the values are smaller and three quarters are larger for the 25th percentile; three quar‐
ters are smaller and one quarter are larger at the 75th percentile. Deciles break the
data set into 10 equal parts. Making this concept generic, n-tiles allow us to calculate
any percentile of the data set: 27th percentile, 50.5th percentile, and so on.
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Window Functions
The n-tiles functions are part of a group of SQL functions called window or analytic
functions. Unlike most SQL functions, which can operate only on the current row of
data, window functions perform calculations that span multiple rows. Window func‐
tions have special syntax that includes the function name and an OVER clause that is
used to determine the rows on which to operate and the ordering of those rows. The
general format of a window function is:

function(field_name) over (partition by field_name order by field_name)

The function can be any of the normal aggregations (count, sum, avg, min, max) as well
as a number of special functions, including rank, first_value, and ntile. The PAR‐
TITION BY clause can include zero or more fields. When no fields are specified, the
function operates over the entire table, but when one or more fields are specified, the
function will operate only on that section of rows. For example, we might PARTI‐
TION BY a customer_id to perform calculations about all of the records per cus‐
tomer, restarting the calculation for each customer. The ORDER BY clause determines
the ordering of the rows for functions that rely on this; for example, to rank custom‐
ers, we need to specify a field by which to order them, such as number of orders. All
of the major database types have window functions, except for versions of MySQL
prior to 8.0.2. We will see these useful functions throughout the book, along with
additional explanations of how they work and how to set up the arguments correctly.

Many databases have a median function built in but rely on more generic n-tile func‐
tions for the rest. These functions are window functions, computing across a range of
rows to return a value for a single row. They take an argument that specifies the num‐
ber of bins to split the data into and, optionally, a PARTITION BY and/or an ORDER
BY clause:

ntile(num_bins) over (partition by... order by...)

As an example, imagine we had 12 transactions with order_amounts of $19.99, $9.99,
$59.99, $11.99, $23.49, $55.98, $12.99, $99.99, $14.99, $34.99, $4.99, and $89.99. Per‐
forming an ntile calculation with 10 bins sorts each order_amount and assigns a bin
from 1 to 10:

order_amount  ntile
------------  -----
4.99          1
9.99          1
11.99         2
12.99         2
14.99         3
19.99         4
23.49         5
34.99         6
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55.98         7
59.99         8
89.99         9
99.99         10

This can be used to bin records in practice by first calculating the ntile of each row
in a subquery and then wrapping it in an outer query that uses min and max to find
the upper and lower boundaries of the value range:

SELECT ntile
,min(order_amount) as lower_bound
,max(order_amount) as upper_bound
,count(order_id) as orders
FROM
(
    SELECT customer_id, order_id, order_amount
    ,ntile(10) over (order by order_amount) as ntile
    FROM orders
) a
GROUP BY 1
;

A related function is percent_rank. Instead of returning the bins that the data falls
into, percent_rank returns the percentile. It takes no argument but requires paren‐
theses and optionally takes a PARTITION BY and/or an ORDER BY clause:

percent_rank() over (partition by... order by...)

While not as useful as ntile for binning, percent_rank can be used to create a con‐
tinuous distribution, or it can be used as an output itself for reporting or further anal‐
ysis. Both ntile and percent_rank can be expensive to compute over large data sets,
since they require sorting all the rows. Filtering the table to only the data set you need
helps. Some databases have implemented approximate versions of the functions that
are faster to compute and generally return high-quality results if absolute precision is
not required. We will look at additional uses for n-tiles in the discussion of anomaly
detection in Chapter 6.

In many contexts, there is no single correct or objectively best way to look at distribu‐
tions of data. There is significant leeway for analysts to use the preceding techniques
to understand data and present it to others. However, data scientists need to use judg‐
ment and must bring their ethical radar along whenever sharing distributions of sen‐
sitive data.

Profiling: Data Quality
Data quality is absolutely critical when it comes to creating good analysis. Although
this may seem obvious, it has been one of the hardest lessons I’ve learned in my years
of working with data. It’s easy to get overly focused on the mechanics of processing
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the data, finding clever query techniques and just the right visualization, only to have
stakeholders ignore all of that and point out the one data inconsistency. Ensuring data
quality can be one of the hardest and most frustrating parts of analysis. The saying
“garbage in, garbage out” captures only part of the problem. Good ingredients in plus
incorrect assumptions can also lead to garbage out.

Comparing data against ground truth, or what is otherwise known to be true, is ideal
though not always possible. For example, if you are working with a replica of a pro‐
duction database, you could compare the row counts in each system to verify that all
rows arrived in the replica database. In other cases, you might know the dollar value
and count of sales in a particular month and thus can query for this information in
the database to make sure the sum of sales and count of records match. Often the dif‐
ference between your query results and the expected value comes down to whether
you applied the correct filters, such as excluding cancelled orders or test accounts;
how you handled nulls and spelling anomalies; and whether you set up correct JOIN
conditions between tables.

Profiling is a way to uncover data quality issues early on, before they negatively
impact results and conclusions drawn from the data. Profiling reveals nulls, categori‐
cal codings that need to be deciphered, fields with multiple values that need to be
parsed, and unusual datetime formats. Profiling can also uncover gaps and step
changes in the data that have resulted from tracking changes or outages. Data is
rarely perfect, and it’s often only through its use in analysis that data quality issues are
uncovered.

Detecting Duplicates
A duplicate is when you have two (or more) rows with the same information. Dupli‐
cates can exist for any number of reasons. A mistake might have been made during
data entry, if there is some manual step. A tracking call might have fired twice. A pro‐
cessing step might have run multiple times. You might have created it accidentally
with a hidden many-to-many JOIN. However they come to be, duplicates can really
throw a wrench in your analysis. I can recall times early in my career when I thought
I had a great finding, only to have a product manager point out that my sales figure
was twice the actual sales. It’s embarrassing, it erodes trust, and it requires rework and
sometimes painstaking reviews of the code to find the problem. I’ve learned to check
for duplicates as I go.

Fortunately, it’s relatively easy to find duplicates in our data. One way is to inspect a
sample, with all columns ordered:

SELECT column_a, column_b, column_c...
FROM table
ORDER BY 1,2,3...
;
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This will reveal whether the data is full of duplicates, for example, when looking at a
brand-new data set, when you suspect that a process is generating duplicates, or after
a possible Cartesian JOIN. If there are only a few duplicates, they might not show up
in the sample. And scrolling through data to try to spot duplicates is taxing on
your eyes and brain. A more systematic way to find duplicates is to SELECT the col‐
umns and then count the rows (this might look familiar from the discussion of
histograms!):

SELECT count(*)
FROM
(
    SELECT column_a, column_b, column_c...
    , count(*) as records
    FROM...
    GROUP BY 1,2,3...
) a
WHERE records > 1
;

This will tell you whether there are any cases of duplicates. If the query returns 0,
you’re good to go. For more detail, you can list out the number of records (2, 3, 4,
etc.):

SELECT records, count(*)
FROM
(
    SELECT column_a, column_b, column_c..., count(*) as records
    FROM...
    GROUP BY 1,2,3...
) a
WHERE records > 1
GROUP BY 1
;

As an alternative to a subquery, you can use a HAVING clause and
keep everything in a single main query. Since it is evaluated after
the aggregation and GROUP BY, HAVING can be used to filter on
the aggregation value:

SELECT column_a, column_b, column_c..., count(*) as records
FROM...
GROUP BY 1,2,3...
HAVING count(*) > 1
;

I prefer to use subqueries, because I find that they’re a useful way to
organize my logic. Chapter 8 will discuss order of evaluation and
strategies for keeping your SQL queries organized.
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For full detail on which records have duplicates, you can list out all the fields and
then use this information to chase down which records are problematic:

SELECT *
FROM
(
    SELECT column_a, column_b, column_c..., count(*) as records
    FROM...
    GROUP BY 1,2,3...
) a
WHERE records = 2
;

Detecting duplicates is one thing; figuring out what to do about them is another. It’s
almost always useful to understand why duplicates are occurring and, if possible, fix
the problem upstream. Can a data process be improved to reduce or remove duplica‐
tion? Is there an error in an ETL process? Have you failed to account for a one-to-
many relationship in a JOIN? Next, we’ll turn to some options for handling and
removing duplicates with SQL.

Deduplication with GROUP BY and DISTINCT
Duplicates happen, and they’re not always a result of bad data. For example, imagine
we want to find a list of all the customers who have successfully completed a transac‐
tion so we can send them a coupon for their next order. We might JOIN the custom
ers table to the transactions table, which would restrict the records returned to
only those customers that appear in the transactions table:

SELECT a.customer_id, a.customer_name, a.customer_email
FROM customers a
JOIN transactions b on a.customer_id = b.customer_id
;

This will return a row for each customer for each transaction, however, and there are
hopefully at least a few customers who have transacted more than once. We have
accidentally created duplicates, not because there is any underlying data quality prob‐
lem but because we haven’t taken care to avoid duplication in the results. Fortunately,
there are several ways to avoid this with SQL. One way to remove duplicates is to use
the keyword DISTINCT:

SELECT distinct a.customer_id, a.customer_name, a.customer_email
FROM customers a
JOIN transactions b on a.customer_id = b.customer_id
;

Another option is to use a GROUP BY, which, although typically seen in connection
with an aggregation, will also deduplicate in the same way as DISTINCT. I remember
the first time I saw a colleague use GROUP BY without an aggregation dedupe—I
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didn’t even realize it was possible. I find it somewhat less intuitive than DISTINCT,
but the result is the same:

SELECT a.customer_id, a.customer_name, a.customer_email
FROM customers a
JOIN transactions b on a.customer_id = b.customer_id
GROUP BY 1,2,3
;

Another useful technique is to perform an aggregation that returns one row per
entity. Although technically not deduping, it has a similar effect. For example, if we
have a number of transactions by the same customer and need to return one record
per customer, we could find the min (first) and/or the max (most recent) transac
tion_date:

SELECT customer_id
,min(transaction_date) as first_transaction_date
,max(transaction_date) as last_transaction_date
,count(*) as total_orders
FROM table
GROUP BY customer_id
;

Duplicate data, or data that contains multiple records per entity even if they techni‐
cally are not duplicates, is one of the most common reasons for incorrect query
results. You can suspect duplicates as the cause if all of a sudden the number of cus‐
tomers or total sales returned by a query is many times greater than what you were
expecting. Fortunately, there are several techniques that can be applied to prevent this
from occurring.

Another common problem is missing data, which we’ll turn to next.

Preparing: Data Cleaning
Profiling often reveals where changes can make the data more useful for analysis. 
Some of the steps are CASE transformations, adjusting for null, and changing data
types.

Cleaning Data with CASE Transformations
CASE statements can be used to perform a variety of cleaning, enrichment, and sum‐
marization tasks. Sometimes the data exists and is accurate, but it would be more use‐
ful for analysis if values were standardized or grouped into categories. The structure
of CASE statements was presented earlier in this chapter, in the section on binning.

Nonstandard values occur for a variety of reasons. Values might come from different
systems with slightly different lists of choices, system code might have changed,
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options might have been presented to the customer in different languages, or the cus‐
tomer might have been able to fill out the value rather than pick from a list.

Imagine a field containing information about the gender of a person. Values indicat‐
ing a female person exist as “F,” “female,” and “femme.” We can standardize the values
like this:

CASE when gender = 'F' then 'Female'
     when gender = 'female' then 'Female'
     when gender = 'femme' then 'Female'
     else gender 
     end as gender_cleaned

CASE statements can also be used to add categorization or enrichment that does not
exist in the original data. As an example, many organizations use a Net Promoter
Score, or NPS, to monitor customer sentiment. NPS surveys ask respondents to rate,
on a scale of 0 to 10, how likely they are to recommend a company or product to a
friend or colleague. Scores of 0 to 6 are considered detractors, 7 and 8 are passive, and
9 and 10 are promoters. The final score is calculated by subtracting the percentage of
detractors from the percentage of promoters. Survey result data sets usually include
optional free text comments and are sometimes enriched with information the orga‐
nization knows about the person surveyed. Given a data set of NPS survey responses,
the first step is to group the responses into the categories of detractor, passive, and
promoter:

SELECT response_id
,likelihood
,case when likelihood <= 6 then 'Detractor'
      when likelihood <= 8 then 'Passive'
      else 'Promoter'
     end as response_type
FROM nps_responses
;

Note that the data type can differ between the field being evaluated and the return
data type. In this case, we are checking an integer and returning a string. Listing out
all the values with an IN list is also an option. The IN operator allows you to specify a
list of items rather than having to write an equality for each one separately. It is useful
when the input isn’t continuous or when values in order shouldn’t be grouped
together:

case when likelihood in (0,1,2,3,4,5,6) then 'Detractor'
     when likelihood in (7,8) then 'Passive'
     when likelihood in (9,10) then 'Promoter'
     end as response_type

CASE statements can consider multiple columns and can contain AND/OR logic.
They can also be nested, though often this can be avoided with AND/OR logic:
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case when likelihood <= 6 
          and country = 'US' 
          and high_value = true 
          then 'US high value detractor'
     when likelihood >= 9 
          and (country in ('CA','JP') 
               or high_value = true
              ) 
          then 'some other label'
     ... end

Alternatives for Cleaning Data
Cleaning or enriching data with a CASE statement  works well as long as there is a
relatively short list of variations, you can find them all in the data, and the list of val‐
ues isn’t expected to change. For longer lists and ones that change frequently, a lookup
table can be a better option. A lookup table exists in the database and is either static
or populated with code that checks for new values periodically. The query will JOIN
to the lookup table to get the cleaned data. In this way, the cleaned values can be
maintained outside your code and used by many queries, without your having to
worry about maintaining consistency between them. An example of this might be a
lookup table that maps state abbreviations to full state names. In my own work, I
often start with a CASE statement and create a lookup table only after the list
becomes unruly, or once it’s clear that my team or I will need to use this cleaning step
repeatedly.

Of course, it’s worth investigating whether the data can be cleaned upstream. I once
started with a CASE statement of 5 or so lines that grew to 10 lines and then eventu‐
ally to more than 100 lines, at which point the list was unruly and difficult to main‐
tain. The insights were valuable enough that I was able to convince engineers to
change the tracking code and send the meaningful categorizations in the data stream
in the first place.

Another useful thing you can do with CASE statements is to create flags indicating
whether a certain value is present, without returning the actual value. This can be
useful during profiling for understanding how common the existence of a particular
attribute is. Another use for flagging is during preparation of a data set for statistical
analysis. In this case, a flag is also known as a dummy variable, taking a value of 0 or
1 and indicating the presence or absence of some qualitative variable. For example,
we can create is_female and is_promoter flags with CASE statements on gender
and likelihood (to recommend) fields:

SELECT customer_id
,case when gender = 'F' then 1 else 0 end as is_female
,case when likelihood in (9,10) then 1 else 0 end as is_promoter
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FROM ...
;

If you are working with a data set that has multiple rows per entity, such as with line
items in an order, you can flatten the data with a CASE statement wrapped in an
aggregate and turn it into a flag at the same time by using 1 and 0 as the return value.
We saw previously that a BOOLEAN data type is often used to create flags (fields that
represent the presence or absence of some attribute). Here, 1 is substituted for TRUE
and 0 is substituted for FALSE so that a max aggregation can be applied. The way this
works is that for each customer, the CASE statement returns 1 for any row with a
fruit type of “apple.” Then max is evaluated and will return the largest value from any
of the rows. As long as a customer bought an apple at least once, the flag will be 1; if
not, it will be 0:

SELECT customer_id
,max(case when fruit = 'apple' then 1 
          else 0 
          end) as bought_apples
,max(case when fruit = 'orange' then 1 
          else 0 
          end) as bought_oranges
FROM ...
GROUP BY 1
;

You can also construct more complex conditions for flags, such as requiring a thres‐
hold or amount of something before labeling with a value of 1:

SELECT customer_id
,max(case when fruit = 'apple' and quantity > 5 then 1 
          else 0 
          end) as loves_apples
,max(case when fruit = 'orange' and quantity > 5 then 1 
          else 0 
          end) as loves_oranges
FROM ...
GROUP BY 1
;

CASE statements are powerful, and as we saw, they can be used to clean, enrich, and
flag or add dummy variables to data sets. In the next section, we’ll look at some spe‐
cial functions related to CASE statements that handle null values specifically.

Type Conversions and Casting
Every field in a database is defined with a data type, which we reviewed at the begin‐
ning of this chapter. When data is inserted into a table, values that aren’t of the field’s
type are rejected by the database. Strings can’t be inserted into integer fields, and boo‐
leans are not allowed in date fields. Most of the time, we can take the data types for
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granted and apply string functions to strings, date functions to dates, and so on.
Occasionally, however, we need to override the data type of the field and force it to be
something else. This is where type conversions and casting come in.

Type conversion functions allow pieces of data with the appropriate format to be
changed from one data type to another. The syntax comes in a few forms that are
basically equivalent. One way to change the data type is with the cast function, cast
(input as data_type), or two colons, input :: data_type. Both of these are
equivalent and convert the integer 1,234 to a string:

cast (1234 as varchar)

1234::varchar

Converting an integer to a string can be useful in CASE statements when categorizing
numeric values with some unbounded upper or lower value. For example, in the fol‐
lowing code, leaving the values that are less than or equal to 3 as integers while
returning the string “4+” for higher values would result in an error:

case when order_items <= 3 then order_items
     else '4+' 
     end

Casting the integers to the VARCHAR type solves the problem:

case when order_items <= 3 then order_items::varchar
     else '4+' 
     end

Type conversions also come in handy when values that should be integers are parsed
out of a string, and then we want to aggregate the values or use mathematical func‐
tions on them. Imagine we have a data set of prices, but the values include the dollar
sign ($), and so the data type of the field is VARCHAR.  We can remove the $ charac‐
ter with a function called replace, which will be discussed more during our look at
text analysis in Chapter 5:

SELECT replace('$19.99','$','');
replace
-------
9.99

The result is still a VARCHAR, however, so trying to apply an aggregation will return
an error. To fix this, we can cast the result as a FLOAT:

replace('$19.99','$','')::float
cast(replace('$19.99','$','')) as float

Dates and datetimes can come in a bewildering array of formats, and understanding
how to cast them to the desired format is useful. I’ll show a few examples on type
conversion here, and Chapter 3 will go into more detail on date and datetime calcula‐
tions. As a simple example, imagine that transaction or event data often arrives in the
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database as a TIMESTAMP, but we want to summarize some value such as transac‐
tions by day. Simply grouping by the timestamp will result in more rows than
necessary. Casting the TIMESTAMP to a DATE reduces the size of the results and
achieves our summarization goal:

SELECT tx_timestamp::date, count(transactions) as num_transactions
FROM ...
GROUP BY 1
;

Likewise, a DATE can be cast to a TIMESTAMP when a SQL function requires a
TIMESTAMP argument. Sometimes the year, month, and day are stored in separate
columns, or they end up as separate elements because they’ve been parsed out of a
longer string. These then need to be assembled back into a date. To do this, we use the
concatenation operator || (double pipe) or concat function and then cast the result to
a DATE. Any of these syntaxes works and returns the same value:

(year || ',' || month|| '-' || day)::date

Or equivalently:

cast(concat(year, '-', month, '-', day) as date)

Yet another way to convert between string values and dates is by using the date func‐
tion. For example, we can construct a string value as above and convert it into a date:

date(concat(year, '-', month, '-', day))

The to_datatype functions can take both a value and a format string and thus give you
more control over how the data is converted. Table 2-4 summarizes the functions and
their purposes. They are particularly useful when converting in and out of DATE or
DATETIME formats, as they allow you to specify the order of the date and time
elements.

Table 2-4. The to_datatype functions

Function Purpose
to_char Converts other types to string

to_number Converts other types to numeric

to_date Converts other types to date, with specified date parts

to_timestamp Converts other types to date, with specified date and time parts

Sometimes the database automatically converts a data type. This is called type coer‐
cion. For example, INT and FLOAT numerics can usually be used together in mathe‐
matical functions or aggregations without explicitly changing the type. CHAR and
VARCHAR values can usually be mixed. Some databases will coerce BOOLEAN
fields to 0 and 1 values, where 0 is FALSE and 1 is TRUE, but some databases require
you to convert the values explicitly. Some databases are pickier than others about
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mixing dates and datetimes in result sets and functions. You can read through the
documentation, or you can do some simple query experiments to learn how the
database you’re working with handles data types implicitly and explicitly. There is
usually a way to accomplish what you want, though sometimes you need to get crea‐
tive in using functions in your queries.

Dealing with Nulls: coalesce, nullif, nvl Functions
Null was one of the stranger concepts I had to get used to when I started working
with data. Null just isn’t something we think about in daily life, where we’re used to
dealing in concrete quantities of things. Null has a special meaning in databases and
was introduced by Edgar Codd, the inventor of the relational database, to ensure that
databases have a way to represent missing information. If someone asks me how
many parachutes I have, I can answer “zero.” But if the question is never asked, I have
null parachutes.

Nulls can represent fields for which no data was collected or that aren’t applicable for
that row. When new columns are added to a table, the values for previously created
rows will be null unless explicitly filled with some other value. When two tables are
joined via an OUTER JOIN, nulls will appear in any fields for which there is no
matching record in the second table.

Nulls are problematic for certain aggregations and groupings, and different types of
databases handle them in different ways. For example, imagine I have five records,
with 5, 10, 15, 20, and null. The sum of these is 50, but the average is either 10 or 12.5
depending on whether the null value is counted in the denominator. The whole ques‐
tion may also be considered invalid since one of the values is null. For most database
functions, a null input will return a null output. Equalities and inequalities involving
null also return null. A variety of unexpected and frustrating results can be output
from your queries if you are not on the lookout for nulls.

When tables are defined, they can either allow nulls, reject nulls, or populate a default
value if the field would otherwise be left null. In practice, this means that you can’t
always rely on a field to show up as null if the data is missing, because it may have
been filled with a default value such as 0. I once had a long debate with a data engi‐
neer when it turned out that null dates in the source system were defaulting to
“1970-01-01” in our data warehouse. I insisted that the dates should be null instead,
to reflect the fact that they were unknown or not applicable. The engineer pointed out
that I could remember to filter those dates or change them back to null with a CASE
statement. I finally prevailed by pointing out that one day another user who wasn’t as
aware of the nuances of default dates would come along, run a query, and get the puz‐
zling cluster of customers about a year before the company was even founded.
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Nulls are often inconvenient or inappropriate for the analysis you want to do. They
can also make output confusing to the intended audience for your analysis. Business‐
people don’t necessarily understand how to interpret a null value or may assume that
null values represent a problem with data quality.

Empty Strings
A concept related to but slightly different from nulls is empty string, where there is no
value but the field is not technically null. One reason an empty string might be used is
to indicate that a field is known to be blank, as opposed to null, where the value might
be missing or unknown. For example, the database might have a name_suffix field
that can be used to hold a value such as “Jr.” Many people do not have a name_suffix,
so an empty string is appropriate. Empty string can also be used as a default value
instead of null, or as a way to overcome a NOT NULL constraint by inserting a value,
even if empty. An empty string can be specified in a query with two quote marks:

WHERE my_field = '' or my_field <> 'apple'

Profiling the frequencies of values should reveal whether your data includes nulls,
empty strings, or both.

There are a few ways to replace nulls with alternate values: CASE statements, and the
specialized coalesce and nullif functions. We saw previously that CASE statements
can check a condition and return a value. They can also be used to check for a null
and, if one is found, replace it with another value:

case when num_orders is null then 0 else num_orders end

case when address is null then 'Unknown' else address end

case when column_a is null then column_b else column_a end

The coalesce function is a more compact way to achieve this. It takes two or more
arguments and returns the first one that is not null:

coalesce(num_orders,0)

coalesce(address,'Unknown')

coalesce(column_a,column_b)

coalesce(column_a,column_b,column_c)

The function nvl exists in some databases and is similar to
coalesce, but it allows only two arguments.
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The nullif function compares two numbers, and if they are not equal, it returns the
first number; if they are equal, the function returns null. Running this code:

nullif(6,7)

returns 6, whereas null is returned by:

nullif(6,6)

nullif is equivalent to the following, more wordy case statement:

case when 6 = 7 then 6 
     when 6 = 6 then null
     end

This function can be useful for turning values back into nulls when you know a cer‐
tain default value has been inserted into the database. For example, with my default
time example, we could change it back to null by using:

nullif(date,'1970-01-01')

Nulls can be problematic when filtering data in the WHERE clause.
Returning values that are null is fairly straightforward:

WHERE my_field is null

However, imagine that my_field contains some nulls and also
some names of fruits. I would like to return all rows that are not
apples. It seems like this should work:

WHERE my_field <> 'apple'

However, some databases will exclude both the “apple” rows and all
rows with null values in my_field. To correct this, the SQL should
both filter out “apple” and explicitly include nulls by connecting the
conditions with OR:

WHERE my_field <> 'apple' or my_field is null

Nulls are a fact of life when working with data. Regardless of why they occur, we often
need to consider them in profiling and as targets for data cleaning. Fortunately, there
are a number of ways to detect them with SQL, as well as several useful functions that
allow us to replace nulls with alternate values. Next we’ll look at missing data, a prob‐
lem that can cause nulls but has even wider implications and thus deserves a section
of its own.

Missing Data
Data can be missing for a variety of reasons, each with its own implications for how
you decide to handle the data’s absence. A field might not have been required by the
system or process that collected it, as with an optional “how did you hear about us?”
field in an ecommerce checkout flow. Requiring this field might create friction for the
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customer and decrease successful checkouts. Alternatively, data might normally be
required but wasn’t collected due to a code bug or human error, such as in a medical
questionnaire where the interviewer missed the second page of questions. A change
in the way the data was collected can result in records before or after the change hav‐
ing missing values. A tool tracking mobile app interactions might add an additional
field recording whether the interaction was a tap or a scroll, for example, or remove
another field due to functionality change. Data can be orphaned when a table refer‐
ences a value in another table, and that row or the entire table has been deleted or is
not yet loaded into the data warehouse. Finally, data may be available but not at the
level of detail, or granularity, needed for the analysis. An example of this comes from
subscription businesses, where customers pay on an annual basis for a monthly prod‐
uct and we want to analyze monthly revenue.

In addition to profiling the data with histograms and frequency analysis, we can often
detect missing data by comparing values in two tables. For example, we might expect
that each customer in the transactions table also has a record in the customer table.
To check this, query the tables using a LEFT JOIN and add a WHERE condition to
find the customers that do not exist in the second table:

SELECT distinct a.customer_id
FROM transactions a
LEFT JOIN customers b on a.customer_id = b.customer_id
WHERE b.customer_id is null
;

Missing data can be an important signal in and of itself, so don’t assume that it always
needs to be fixed or filled. Missing data can reveal the underlying system design or
biases in the data collection process.

Records with missing fields can be filtered out entirely, but often we want to keep
them and instead make some adjustments based on what we know about expected or
typical values. We have some options, called imputation techniques, for filling in
missing data. These include filling with an average or median of the data set, or with
the previous value. Documenting the missing data and how it was replaced is impor‐
tant, as this may impact the downstream interpretation and use of the data. Imputed
values can be particularly problematic when the data is used in machine learning, for
example.

A common option is to fill missing data with a constant value. Filling with a constant
value can be useful when the value is known for some records even though they were
not populated in the database. For example, imagine there was a software bug that
prevented the population of the price for an item called “xyz,” but we know the price
is always $20. A CASE statement can be added to the query to handle this:

case when price is null and item_name = 'xyz' then 20 
                                              else price 
                                              end as price
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Another option is to fill with a derived value, either a mathematical function on other
columns or a CASE statement. For example, imagine we have a field for the
net_sales amount for each transaction. Due to a bug, some rows don’t have this field
populated, but they do have the gross_sales and discount fields populated. We can
calculate net_sales by subtracting discount from gross_sales:

SELECT gross_sales - discount as net_sales...

Missing values can also be filled with values from other rows in the data set. Carrying
over a value from the previous row is called fill forward, while using a value from the
next row is called fill backward. These can be accomplished with the lag and lead
window functions, respectively. For example, imagine that our transaction table has a
product_price field that stores the undiscounted price a customer pays for a prod
uct. Occasionally this field is not populated, but we can make an assumption that the
price is the same as the price paid by the last customer to buy that product. We can
fill with the previous value using the lag function, PARTITION BY the product to
ensure the price is pulled only from the same product, and ORDER BY the appropri‐
ate date to ensure the price is pulled from the most recent prior transaction:

lag(product_price) over (partition by product order by order_date)

The lead function could be used to fill with product_price for the following transac‐
tion. Alternatively, we could take the avg of prices for the product and use that to fill
in the missing value. Filling with previous, next, or average values involves making
some assumptions about typical values and what’s reasonable to include in an analy‐
sis. It’s always a good idea to check the results to make sure they are plausible and to
note that you have interpolated the data when not available.

For data that is available but not at the granularity needed, we often have to create
additional rows in the data set. For example, imagine we have a customer_subscrip
tions table with the fields subscription_date and annual_amount. We can spread
this annual subscription amount into 12 equal monthly revenue amounts by dividing
by 12, effectively converting ARR (annual recurring revenue) into MRR (monthly
recurring revenue):

SELECT customer_id
,subscription_date
,annual_amount
,annual_amount / 12 as month_1
,annual_amount / 12 as month_2
...
,annual_amount / 12 as month_12
FROM customer_subscriptions
;
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This gets a bit tedious, particularly if subscription periods can be two, three, or five
years as well as one year. It’s also not helpful if what we want is the actual dates of the
months. In theory we could write a query like this:

SELECT customer_id
,subscription_date
,annual_amount
,annual_amount / 12 as '2020-01'
,annual_amount / 12 as '2020-02'
...
,annual_amount / 12 as '2020-12'
FROM customer_subscriptions
;

However, if the data includes orders from customers across time, hardcoding the
month names won’t be accurate. We could use CASE statements in combination with
hardcoded month names, but again this is tedious and is likely to be error-prone as
you add more convoluted logic. Instead, creating new rows through a JOIN to a table
such as a date dimension provides an elegant solution.

A date dimension is a static table that has one row per day, with optional extended
date attributes, such as day of the week, month name, end of month, and fiscal year.
The dates extend far enough into the past and far enough into the future to cover all
anticipated uses. Because there are only 365 or 366 days per year, tables covering even
100 years don’t take up a lot of space. Figure 2-3 shows a sample of the data in a date
dimension table. Sample code to create a date dimension using SQL functions is on
the book’s GitHub site.

Figure 2-3. A date dimension table with date attributes

If you’re using a Postgres database, the generate_series function can be used to cre‐
ate a date dimension either to populate the table initially or if creating a table is not
an option. It takes the following form:
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generate_series(start, stop, step interval)

In this function, start is the first date you want in the series, stop is the last date, and
step interval is the time period between values. The step interval can take any
value, but one day is appropriate for a date dimension:

SELECT * 
FROM generate_series('2000-01-01'::timestamp,'2030-12-31', '1 day')

The generate_series function requires at least one of the arguments to be a TIME‐
STAMP, so “2000-01-01” is cast as a TIMESTAMP. We can then create a query that
results in a row for every day, regardless of whether a customer ordered on a particu‐
lar day. This is useful when we want to ensure that a customer is counted for each day,
or when we specifically want to count or otherwise analyze days on which a customer
did not make a purchase:

SELECT a.generate_series as order_date, b.customer_id, b.items
FROM
(
    SELECT *
    FROM generate_series('2020-01-01'::timestamp,'2020-12-31','1 day')
) a
LEFT JOIN 
(
    SELECT customer_id, order_date, count(item_id) as items
    FROM orders
    GROUP BY 1,2
) b on a.generate_series = b.order_date
;

Returning to our subscription example, we can use the date dimension to create a
record for each month by JOINing the date dimension on dates that are between the
subscription_date and 11 months later (for 12 total months):

SELECT a.date
,b.customer_id
,b.subscription_date
,b.annual_amount / 12 as monthly_subscription
FROM date_dim a
JOIN customer_subscriptions b on a.date between b.subscription_date 
and b.subscription_date + interval '11 months'
;

Data can be missing for various reasons, and understanding the root cause is impor‐
tant in deciding how to deal with it. There are a number of options for finding and
replacing missing data. These include using CASE statements to set default values,
deriving values by performing calculations on other fields in the same row, and inter‐
polating from other values in the same column.

Data cleaning is an important part of the data preparation process. Data may need to
be cleaned for many different reasons. Some data cleaning needs to be done to fix
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poor data quality, such as when there are inconsistent or missing values in the raw
data, while other data cleaning is done to make further analysis easier or more mean‐
ingful. The flexibility of SQL allows us to perform cleaning tasks in a variety of ways.

After data is cleaned, a common next step in the preparation process is shaping the
data set. 

Preparing: Shaping Data
Shaping data refers to manipulating the way the data is represented in columns and
rows. Each table in the database has a shape. The result set of each query has a shape.
Shaping data may seem like a rather abstract concept, but if you work with enough
data, you will come to see its value. It is a skill that can be learned, practiced, and
mastered.

One of the most important concepts in shaping data is figuring out the granularity of
data that you need. Just as rocks can range in size from giant boulders down to grains
of sand, and even further down to microscopic dust, so too can data have varying lev‐
els of detail. For example, if the population of a country is a boulder, then the popula‐
tion of a city is a small rock, and that of a household is a grain of sand. Data at a
smaller level of detail might include individual births and deaths, or moves from one
city or country to another.

Flattening data is another important concept in shaping. This refers to reducing the
number of rows that represent an entity, including down to a single row. Joining mul‐
tiple tables together to create a single output data set is one way to flatten data.
Another way is through aggregation.

In this section, we’ll first cover some considerations for choosing data shapes. Then
we’ll look at some common use cases: pivoting and unpivoting. We’ll see examples of
shaping data for specific analyses throughout the remaining chapters. Chapter 8 will
go into more detail on keeping complex SQL organized when creating data sets for
further analysis.

For Which Output: BI, Visualization, Statistics, ML
Deciding how to shape your data with SQL depends a lot on what you are planning to
do with the data afterward. It’s generally a good idea to output a data set that has as
few rows as possible while still meeting your need for granularity. This will leverage
the computing power of the database, reduce the time it takes to move data from the
database to somewhere else, and reduce the amount of processing you or someone
else needs to do in other tools. Some of the other tools that your output might go to
are a BI tool for reporting and dashboarding, a spreadsheet for business users to
examine, a statistics tool such as R, or a machine learning model in Python—or you
might output the data straight to a visualization created with a range of tools.
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When outputting data to a business intelligence tool for reports and dashboards, it’s
important to understand the use case. Data sets may need to be very detailed to
enable exploration and slicing by end users. They may need to be small and aggrega‐
ted and include specific calculations to enable fast loading and response times in
executive dashboards. Understanding how the tool works, and whether it performs
better with smaller data sets or is architected to perform its own aggregations across
larger data sets, is important. There is no “one size fits all” answer. The more you
know about how the data will be used, the better prepared you will be to shape the
data appropriately.

Smaller, aggregated, and highly specific data sets often work best for visualizations,
whether they are created in commercial software or using a programming language
like R, Python, or JavaScript. Think about the level of aggregation and slices, or vari‐
ous elements, the end users will need to filter on. Sometimes the data sets require a
row for each slice, as well as an “everything” slice. You may need to UNION together
two queries—one at the detail level and one at the “everything” level.

When creating output for statistics packages or machine learning models, it’s impor‐
tant to understand the core entity being studied, the level of aggregation desired, and
the attributes or features needed. For example, a model might need one record per
customer with several attributes, or a record per transaction with its associated
attributes as well as customer attributes. Generally, the output for modeling will fol‐
low the notion of “tidy data” proposed by Hadley Wickham.2 Tidy data has these
properties:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each value is a cell.

We will next look at how to use SQL to transform data from the structure in which it
exists in your database into any other pivoted or unpivoted structure that is needed
for analysis.

Pivoting with CASE Statements
A pivot table is a way to summarize data sets by arranging the data into rows, accord‐
ing to the values of an attribute, and columns, according to the values of another
attribute. At the intersection of each row and column, a summary statistic such as
sum, count, or avg is calculated. Pivot tables are often a good way to summarize data
for business audiences, since they reshape the data into a more compact and easily
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understandable form. Pivot tables are widely known from their implementation in
Microsoft Excel, which has a drag-and-drop interface to create the summaries of data.

Pivot tables, or pivoted output, can be created in SQL using a CASE statement along
with one or more aggregation functions. We’ve seen CASE statements several times so
far, and reshaping data is another major use case for them. For example, imagine we
have an orders table with a row for each purchase made by customers. To flatten the
data, GROUP BY the customer_id and sum the order_amount:

SELECT customer_id
,sum(order_amount) as total_amount
FROM orders
GROUP BY 1
; 

customer_id  total_amount
-----------  ------------
123          59.99
234          120.55
345          87.99
...          ...

To create a pivot, we will additionally create columns for each of the values of an
attribute. Imagine the orders table also has a product field that contains the type of
item purchased and the order_date. To create pivoted output, GROUP BY the
order_date, and sum the result of a CASE statement that returns the order_amount
whenever the row meets the product name criteria:

SELECT order_date
,sum(case when product = 'shirt' then order_amount 
          else 0 
          end) as shirts_amount
,sum(case when product = 'shoes' then order_amount 
          else 0 
          end) as shoes_amount
,sum(case when product = 'hat' then order_amount 
          else 0 
          end) hats_amount
FROM orders
GROUP BY 1
;

order_date  shirts_amount  shoes_amount  hats_amount
----------  -------------  ------------  -----------
2020-05-01  5268.56        1211.65       562.25
2020-05-02  5533.84        522.25        325.62
2020-05-03  5986.85        1088.62       858.35
...         ...            ...           ...

Note that with the sum aggregation, you can optionally use “else 0” to avoid nulls in
the result set. With count or count distinct, however, you should not include an
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3 US Census Bureau, “International Data Base (IDB),” last updated December 2020, https://www.census.gov/
data-tools/demo/idb.

ELSE statement, as doing so would inflate the result set. This is because the database
won’t count a null, but it will count a substitute value such as zero. 

Pivoting with CASE statements is quite handy, and having this ability opens up data
warehouse table designs that are long and narrow rather than wide, which can be bet‐
ter for storing sparse data, because adding columns to a table can be an expensive
operation. For example, rather than storing various customer attributes in many dif‐
ferent columns, a table could contain multiple records per customer, with each
attribute in a separate row, and with attribute_name and attribute_value fields
specifying what the attribute is and its value. The data can then be pivoted as needed
to assemble a customer record with the desired attributes. This design is efficient
when there are many sparse attributes (only a subset of customers have values for
many of the attributes).

Pivoting data with a combination of aggregation and CASE statements works well
when there are a finite number of items to pivot. For people who have worked with
other programming languages, it’s essentially looping, but written out explicitly line
by line. This gives you a lot of control, such as if you want to calculate different met‐
rics in each column, but it can also be tedious. Pivoting with case statements doesn’t
work well when new values arrive constantly or are rapidly changing, since the SQL
code would need to be constantly updated. In those cases, pushing the computing to
another layer of your analysis stack, such as a BI tool or statistical language, may be
more appropriate.

Unpivoting with UNION Statements
Sometimes we have the opposite problem and need to move data stored in columns
into rows instead to create tidy data. This operation is called unpivoting. Data sets that
may need unpivoting are those that are in a pivot table format. As an example, the
populations of North American countries at 10-year intervals starting in 1980 are
shown in Figure 2-4.

Figure 2-4. Country population by year (in thousands)3
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To turn this into a result set with a row per country per year, we can use a UNION
operator. UNION is a way to combine data sets from multiple queries into a single
result set. There are two forms, UNION and UNION ALL. When using UNION or
UNION ALL, the numbers of columns in each component query must match. The
data types must match or be compatible (integers and floats can be mixed, but inte‐
gers and strings cannot). The column names in the result set come from the first
query. Aliasing the fields in the remaining queries is therefore optional but can make
a query easier to read:

SELECT country
,'1980' as year
,year_1980 as population
FROM country_populations
    UNION ALL
SELECT country
,'1990' as year
,year_1990 as population
FROM country_populations
    UNION ALL
SELECT country
,'2000' as year
,year_2000 as population
FROM country_populations
    UNION ALL
SELECT country
,'2010' as year
,year_2010 as population
FROM country_populations
;

country        year  population
-------------  ----  ----------
Canada         1980  24593
Mexico         1980  68347
United States  1980  227225
...            ...   ...

In this example, we use a constant to hardcode the year, in order to keep track of the
year that the population value corresponds to. The hardcoded values can be of any
type, depending on your use case. You may need to explicitly cast certain hardcoded
values, such as when entering a date:

'2020-01-01'::date as date_of_interest
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What is the difference between UNION and UNION ALL? Both can be used to
append or stack data together in this fashion, but they are slightly different. UNION
removes duplicates from the result set, whereas UNION ALL retains all records,
whether duplicates or not. UNION ALL is faster, since the database doesn’t have to do
a pass over the data to find duplicates. It also ensures that every record ends up in the
result set. I tend to use UNION ALL, using UNION only when I have a reason to sus‐
pect duplicate data.

UNIONing data can also be useful for bringing together data from different sources.
For example, imagine we have a populations table with yearly data per country, and
another gdp table with yearly gross domestic product, or GDP. One option is to JOIN
the tables and obtain a result set with one column for population and another for
GDP:

SELECT a.country, a.population, b.gdp
FROM populations a
JOIN gdp b on a.country = b.country
;

Another option is to UNION ALL the data sets so that we end up with a stacked
data set:

SELECT country, 'population' as metric, population as metric_value
FROM populations
    UNION ALL
SELECT country, 'gdp' as metric, gdp as metric_value
FROM gdp
;

Which approach you use largely depends on the output that you need for your analy‐
sis. The latter option can be useful when you have a number of different metrics in
different tables and no single table has a full set of entities (in this case, countries).
This is an alternative approach to a FULL OUTER JOIN.

pivot and unpivot Functions
Recognizing that the pivot and unpivot use cases are common, some database ven‐
dors have implemented functions to do this with fewer lines of code. Microsoft SQL
Server and Snowflake have pivot functions that take the form of extra expressions in
the WHERE clause. Here, aggregation is any aggregation function, such as sum or avg,
the value_column is the field to be aggregated, and a column will be created for each
value of the label_column listed as a label:

SELECT...
FROM... 
    pivot(aggregation(value_column) 
          for label_column in (label_1, label_2, ...)
;
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We could rewrite the earlier pivoting example that used CASE statements as follows:

SELECT *
FROM orders
  pivot(sum(order_amount) for product in ('shirt','shoes'))
GROUP BY order_date
;

Although this syntax is more compact than the CASE construction we saw earlier, the
desired columns still need to be specified. As a result, pivot doesn’t solve the problem
of newly arriving or rapidly changing sets of fields that need to be turned into col‐
umns. Postgres has a similar crosstab function, available in the tablefunc module.

Microsoft SQL Server and Snowflake also have unpivot functions that work in a sim‐
ilar fashion to expressions in the WHERE clause and transform rows into columns:

SELECT...
FROM... 
    unpivot( value_column for label_column in (label_1, label_2, ...))
;

For example, the country_populations data from the previous example could be
reshaped in the following manner:

SELECT *
FROM country_populations 
    unpivot(population for year in (year_1980, year_1990, year_2000, year_2010))
;

Here again the syntax is more compact than the UNION or UNION ALL approach we
looked at earlier, but the list of columns must be specified in the query.

Postgres has an unnest array function that can be used to unpivot data, thanks to its
array data type. An array is a collection of elements, and in Postgres you can list the
elements of an array in square brackets. The function can be used in the SELECT
clause and takes this form:

unnest(array[element_1, element_2, ...])

Returning to our earlier example with countries and populations, this query returns
the same result as the query with the repeated UNION ALL clauses:

SELECT 
country
,unnest(array['1980', '1990', '2000', '2010']) as year
,unnest(array[year_1980, year_1990, year_2000, year_2010]) as pop
FROM country_populations
;
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country  year  pop
-------  ----  -----
Canada   1980  24593
Canada   1990  27791
Canada   2000  31100
...      ...   ...

Data sets arrive in many different formats and shapes, and they aren’t always in the
format needed in our output. There are several options for reshaping data through
pivoting or unpivoting it, either with CASE statements or UNIONs, or with database-
specific functions. Understanding how to manipulate your data in order to shape it in
the way you want will give you greater flexibility in your analysis and in the way you
present your results.

Conclusion
Preparing data for analysis can feel like the work you do before you get to the real
work of analysis, but it is so fundamental to understanding the data that I always find
it is time well spent. Understanding the different types of data you’re likely to
encounter is critical, and you should take the time to understand the data types in
each table you work with. Profiling data helps us learn more about what is in the data
set and examine it for quality. I often return to profiling throughout my analysis
projects, as I learn more about the data and need to check my query results along the
way as I build in complexity. Data quality will likely never stop being a problem, so
we’ve looked at some ways to handle the cleaning and enhancement of data sets.
Finally, knowing how to shape the data to create the right output format is essential.
We’ll see these topics recur in the context of various analyses throughout the book.
The next chapter, on time series analysis, starts our journey into specific analysis
techniques.
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CHAPTER 3

Time Series Analysis

Now that I’ve covered SQL and databases and the key steps in preparing data for
analysis, it’s time to turn to specific types of analysis that can be done with SQL.
There are a seemingly unending number of data sets in the world, and correspond‐
ingly infinite ways in which they could be analyzed. In this and the following chap‐
ters, I have organized types of analysis into themes that I hope will be helpful as you
build your analysis and SQL skills. Many of the techniques to be discussed build on
those shown in Chapter 2 and then on the preceding chapters as the book progresses.
Time series of data are so prevalent and so important that I’ll start the series of analy‐
sis themes here.

Time series analysis is one of the most common types of analysis done with SQL. A
time series is a sequence of measurements or data points recorded in time order, often
at regularly spaced intervals. There are many examples of time series data in daily life,
such as the daily high temperature, the closing value of the S&P 500 stock index, or
the number of daily steps recorded by your fitness tracker. Time series analysis is
used in a wide variety of industries and disciplines, from statistics and engineering to
weather forecasting and business planning. Time series analysis is a way to under‐
stand and quantify how things change over time.

Forecasting is a common goal of time series analysis. Since time only marches for‐
ward, future values can be expressed as a function of past values, while the reverse is
not true. However, it’s important to note that the past doesn’t perfectly predict the
future. Any number of changes to wider market conditions, popular trends, product
introductions, or other large changes make forecasting difficult. Still, looking at his‐
torical data can lead to insights, and developing a range of plausible outcomes is use‐
ful for planning. As I’m writing this, the world is in the midst of a global COVID-19
pandemic, the likes of which haven’t been seen in 100 years—predating all but the
most long-lived organizations’ histories. Thus many current organizations haven’t
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seen this specific event before, but they have existed through other economic crises,
such as those following the dot-com burst and the 9/11 attacks in 2001, as well as the
global financial crisis of 2007–2008. With careful analysis and understanding of con‐
text, we can often extract useful insights.

In this chapter, we’ll first cover the SQL building blocks of time series analysis: syntax
and functions for working with dates, timestamps, and time. Next, I’ll introduce the
retail sales data set used for examples throughout the rest of the chapter. A discussion
of methods for trending analysis follows, and then I’ll cover calculating rolling time
windows. Next are period-over-period calculations to analyze data with seasonality
components. Finally, we’ll wrap up with some additional techniques that are useful
for time series analysis.

Date, Datetime, and Time Manipulations
Dates and times come in a wide variety of formats, depending on the data source. We
often need or want to transform the raw data format for our output, or to perform
calculations to arrive at new dates or parts of dates. For example, the data set might
contain transaction timestamps, but the goal of the analysis is to trend monthly sales.
At other times, we might want to know how many days or months have elapsed since
a particular event. Fortunately, SQL has powerful functions and formatting capabili‐
ties that can transform just about any raw input to almost any output we might need
for analysis.

In this section, I’ll show you how to convert between time zones, and then I’ll go into
depth on formatting dates and datetimes. Next, I’ll explore date math and time
manipulations, including those that make use of intervals. An interval is a data type
that holds a span of time, such as a number of months, days, or hours. Although data
can be stored in a database table as an interval type, in practice I rarely see this done,
so I will talk about intervals alongside the date and time functions that you can use
them with. Last, I’ll discuss some special considerations when joining or otherwise
combining data from different sources.

Time Zone Conversions
Understanding the standard time zone used in a data set can prevent misunderstand‐
ings and mistakes further into the analysis process. Time zones split the world into
north-south regions that observe the same time. Time zones allow different parts of
the world to have similar clock times for daytime and nighttime—so, for example, the
sun is overhead at 12 p.m. wherever you are in the world. The zones follow irregular
boundaries that are as much political as geographic ones. Most are one hour apart,
but some are offset only 30 or 45 minutes, and so there are more than 30 time zones
spanning the globe. Many countries that are distant from the equator observe day‐
light savings time for parts of the year as well, but there are exceptions, such as in the
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United States and Australia, where some states observe daylight savings time and oth‐
ers do not. Each time zone has a standard abbreviation, such as PST for Pacific Stan‐
dard Time and PDT for Pacific Daylight Time.

Many databases are set to Coordinated Universal Time (UTC), the global standard
used to regulate clocks, and record events in this time zone. It replaced Greenwich
Mean Time (GMT), which you might still see if your data comes from an older data‐
base. UTC does not have daylight savings time, so it stays consistent all year long.
This turns out to be quite useful for analysis. I remember one time a panicked prod‐
uct manager asked me to figure out why sales on a particular Sunday dropped so
much compared to the prior Sunday. I spent hours writing queries and investigating
possible causes before eventually figuring out that our data was recorded in Pacific
Time (PT). Daylight savings started early Sunday morning, the database clock moved
ahead 1 hour, and the day had only 23 hours instead of 24, and thus sales appeared to
drop. Half a year later we had a corresponding 25-hour day, when sales appeared
unusually high.

Often timestamps in the database are not encoded with the time
zone, and you will need to consult with the source or developer to
figure out how your data was stored. UTC has become most com‐
mon in the data sets I see, but that is certainly not universal.

One drawback to UTC, or really to any logging of machine time, is that we lose infor‐
mation about the local time for the human doing the actions that generated the event
recorded in the database. I might want to know whether people tend to use my
mobile app more during the workday or during nights and weekends. If my audience
is clustered in one time zone, it’s not hard to figure this out. But if the audience spans
multiple time zones or is international, then it becomes a calculation task of convert‐
ing each recorded time to its local time zone.

All local time zones have a UTC offset. For example, the offset for PDT is UTC – 7
hours, while the offset for PST is UTC – 8 hours. Timestamps in databases are stored
in the format YYYY-MM-DD hh:mi:ss (for years-months-days hours:minutes:sec‐
onds). Timestamps with the time zone have an additional piece of information for the
UTC offset, expressed as a positive or negative number. Converting from one time
zone to another can be accomplished with at time zone followed by the destination
time zone’s abbreviation. For example, we can convert a timestamp in UTC (offset –
0) to PST:

SELECT '2020-09-01 00:00:00 -0' at time zone 'pst';

timezone
-------------------
2020-08-31 16:00:00
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The destination time zone name can be a constant, or a database field, allowing this
conversion to be dynamic to the data set. Some databases have a convert_timezone
or convert_tz function that works similarly. One argument is the time zone of the
result, and the other argument is the time zone from which to convert:

SELECT convert_timezone('pst','2020-09-01 00:00:00 -0');

timezone
-------------------
2020-08-31 16:00:00

Check your database’s documentation for the exact name and ordering of the target
time zone and the source timestamp arguments. Many databases contain a list of time
zones and their abbreviations in a system table. Some common ones are seen in
Table 3-1. These can be queried with SELECT * FROM the table name. Wikipedia also
has a useful list of standard time zone abbreviations and their UTC offsets.

Table 3-1. Time zone information system tables in common databases
Postgres pg_timezone_names

MySQL mysql.time_zone_names

SQL Server sys.time_zone_info

Redshift pg_timezone_names

Time zones are an innate part of working with timestamps. With time zone conver‐
sion functions, moving between the time zone in which the data was recorded and
any other world time zone is possible. Next, I’ll show you a variety of techniques for
manipulating dates and timestamps with SQL.

Date and Timestamp Format Conversions
Dates and timestamps are key to time series analysis. Due to the wide variety of ways
in which dates and times can be represented in source data, it is almost inevitable that
you will need to convert date formats at some point. In this section, I’ll cover several
of the most common conversions and how to accomplish them with SQL: changing
the data type, extracting parts of a date or timestamp, and creating a date or time‐
stamp from parts. I’ll begin by introducing some handy functions that return the
current date and/or time.

Returning the current date or time is a common analysis task—for example, to
include a timestamp for the result set or to use in date math, covered in the next sec‐
tion. The current date and time are referred to as system time, and while returning
them is easy to do with SQL, there are some syntax differences between databases.
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To return the current date, some databases have a current_date function, with no
parentheses:

SELECT current_date;

There is a wider variety of functions to return the current date and time. Check your
database’s documentation or just experiment by typing into a SQL window to see
whether a function returns a value or an error. The functions with parentheses do not
take arguments, but it is important to include the parentheses:

current_timestamp
localtimestamp
get_date()
now()

Finally, there are functions to return only the timestamp portion of the current
system time. Again, consult documentation or experiment to figure out which func‐
tion(s) to use with your database:

current_time
localtime
timeofday()

SQL has a number of functions for changing the format of dates and times. To reduce
the granularity of a timestamp, use the date_trunc function. The first argument is a
text value indicating the time period level to which to truncate the timestamp in the
second argument. The result is a timestamp value:

date_trunc (text, timestamp)

SELECT date_trunc('month','2020-10-04 12:33:35'::timestamp);

date_trunc
-------------------
2020-10-01 00:00:00

Standard arguments that can be used are listed in Table 3-2. They range all the way
from microseconds to millennia, providing plenty of flexibility. Databases that don’t
support date_trunc, such as MySQL, have an alternate function called date_format
that can be used in a similar way:

SELECT date_format('2020-10-04 12:33:35','%Y-%m-01') as date_trunc;

date_trunc
-------------------
2020-10-01 00:00:00
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Table 3-2. Standard time period arguments

Time period arguments
microsecond
millisecond
second
minute
hour
day
week
month
quarter
year
decade
century
millennium

Rather than returning dates or timestamps, sometimes our analysis calls for parts of
dates or times. For example, we might want to group sales by month, day of the week,
or hour of the day.

SQL provides a few functions for returning just the part of the date or timestamp
required. Dates and timestamps are usually interchangeable, except when the request
is to return a time part. In those cases, time is of course required.

The date_part function takes a text value for the part to be returned and a date or
timestamp value. The returned value is a FLOAT, which is a numeric value with a
decimal part; depending on your needs, you may want to cast the value to an integer
data type:

SELECT date_part('day',current_timestamp);
SELECT date_part('month',current_timestamp);
SELECT date_part('hour',current_timestamp);

Another function that works similarly is extract, which takes a part name and a date
or timestamp value and returns a FLOAT value:

SELECT extract('day' from current_timestamp);

date_part
---------
27.0

SELECT extract('month' from current_timestamp);
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date_part
---------
5.0

SELECT extract('hour' from current_timestamp);

date_part
---------
14.0

The functions date_part and extract can be used with intervals, but note that the
requested part must match the units of the interval. So, for example, requesting days
from an interval stated in days returns the expected value of 30:

SELECT date_part('day',interval '30 days');

SELECT extract('day' from interval '30 days');

date_part
---------
30.0

However, requesting days from an interval stated in months returns a value of 0.0:

SELECT extract('day' from interval '3 months');

date_part
---------
0.0

A full list of date parts can be found in your database’s documenta‐
tion or by searching online, but some of the most common are
“day,” “month,” and “year” for dates, and “second,” “minute,” and
“hour” for timestamps.

To return text values of the date parts, use the to_char function, which takes the
input value and the output format as arguments:

SELECT to_char(current_timestamp,'Day');
SELECT to_char(current_timestamp,'Month');

If you ever encounter timestamps stored as Unix epochs (the num‐
ber of seconds that have elapsed since January 1, 1970, at 00:00:00
UTC), you can convert them to timestamps using the to_time
stamp function.

Sometimes analysis calls for creating a date from parts from different sources. This
can occur when the year, month, and day values are stored in different columns in the
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database. It can also be necessary when the parts have been parsed out of text, a topic
I’ll cover in more depth in Chapter 5.

A simple way to create a timestamp from separate date and time components is to
concatenate them together with a plus sign (+):

SELECT date '2020-09-01' + time '03:00:00' as timestamp;

timestamp 
-------------------
2020-09-01 03:00:00

A date can be assembled using the make_date, makedate, date_from_parts, or date
fromparts function. These are equivalent, but different databases name the functions
differently. The function takes arguments for the year, month, and day parts and
returns a value with a date format:

SELECT make_date(2020,09,01);

make_date
----------
2020-09-01

The arguments can be constants or reference field names and must be integers. Yet
another way to assemble a date or timestamp is to concatenate the values together
and then cast the result to a date format using one of the casting syntaxes or the
to_date function:

SELECT to_date(concat(2020,'-',09,'-',01), 'yyyy-mm-dd');

to_date
----------
2020-09-01

SELECT cast(concat(2020,'-',09,'-',01) as date);

to_date
----------
2020-09-01

SQL has a number of ways to format and convert dates and timestamps and retrieve
system dates and times. In the next section, I will start putting them to use in date
math.

Date Math
SQL allows us to do various mathematical operations on dates. This might be surpris‐
ing since, strictly speaking, dates are not numeric data types, but the concept should
be familiar if you’ve ever tried to figure out what day it will be four weeks from now.
Date math is useful for a variety of analytics tasks. For example, we can use it to find
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the age or tenure of a customer, how much time elapsed between two events, and how
many things occurred within a window of time.

Date math involves two types of data: the dates themselves and intervals. We need the
concept of intervals because date and time components don’t behave like integers.
One-tenth of 100 is 10; one-tenth of a year is 36.5 days. Half of 100 is 50; half of a day
is 12 hours. Intervals allow us to move smoothly between units of time. Intervals
come in two types: year-month intervals and day-time ones. We’ll start with a few
operations that return integer values and then move on to functions that work with
or return intervals.

First, let’s find the days elapsed between two dates. There are several ways to do this
in SQL. The first way is by using a mathematical operator, the minus sign (–):

SELECT date('2020-06-30') - date('2020-05-31') as days;

days
----
30

This returns the number of days between these two dates. Note that the answer is 30
days and not 31. The number of days is inclusive of only one of the endpoints. Sub‐
tracting the dates in the reverse also works and returns an interval of –30 days:

SELECT date('2020-05-31') - date('2020-06-30') as days;

days
----
-30

Finding the difference between two dates can also be accomplished with the datediff
function. Postgres does not support it, but many other popular databases do, includ‐
ing SQL Server, Redshift, and Snowflake, and it’s quite handy, particularly when the
goal is to return an interval other than the number of days. The function takes three
arguments—the time period units you want to return, a starting timestamp or date,
and an ending timestamp or date:

datediff(interval_name, start_timestamp, end_timestamp)

So our previous example would look like this:

SELECT datediff('day',date('2020-05-31'), date('2020-06-30')) as days;

days
----
30

We can also find the number of months between two dates, and the database will do
the correct math even though month lengths differ throughout the year:
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SELECT datediff('month'
                ,date('2020-01-01')
                ,date('2020-06-30')
                ) as months;

months
------
5

In Postgres, this can be accomplished using the age function, which calculates the
interval between two dates:

SELECT age(date('2020-06-30'),date('2020-01-01'));

age
--------------
5 mons 29 days

We can then find the number of months component of the interval with the
date_part() function:

SELECT date_part('month',age('2020-06-30','2020-01-01')) as months;

months
------
5.0

Subtracting dates to find the time elapsed between them is quite powerful. Adding
dates does not work in the same way. To do addition with dates, we need to leverage
intervals or special functions.

For example, we can add seven days to a date by adding the interval '7 days':

SELECT date('2020-06-01') + interval '7 days' as new_date;

new_date
-------------------
2020-06-08 00:00:00

Some databases don’t require the interval syntax and instead automatically convert
the provided number to days, although it’s generally good practice to use the interval
notation, both for cross-database compatibility and to make your code easier to read:

SELECT date('2020-06-01') + 7 as new_date;

new_date
-------------------
2020-06-08 00:00:00

If you want to add a different unit of time, use the interval notation with months,
years, hours, or another date or time period. Note that this can also be used to sub‐
tract intervals from dates by using a “-” instead of a “+.” Many but not all databases
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have a date_add or dateadd function that takes the desired interval, a value, and the
starting date and does the math:

SELECT date_add('month',1,'2020-06-01') as new_date;

new_date
----------
2020-07-01

Consult your database’s documentation, or just experiment with
queries, to figure out the syntax and functions that are available
and appropriate for your project.

Any of these formulations can be used in the WHERE clause in addition to the
SELECT clause. For example, we can filter to records that occurred at least three
months ago:

WHERE event_date < current_date - interval '3 months'

They can also be used in JOIN conditions, but note that database performance will
usually be slower when the JOIN condition contains a calculation rather than an
equality or inequality between dates.

Using date math is common in analysis with SQL, both to find the time elapsed
between dates or timestamps and to calculate new dates based on an interval from a
known date. There are several ways to find the elapsed time between two dates, add
intervals to dates, and subtract intervals from dates. Next, we’ll turn to time manipu‐
lations, which are similar.

Time Math
Time math is less common in many areas of analysis, but it can be useful in some
situations. For example, we might want to know how long it takes for a support rep‐
resentative to answer a phone call in a call center or respond to an email requesting
assistance. Whenever the elapsed time between two events is less than a day, or when
rounding the result to a number of days doesn’t provide enough information, time
manipulation comes into play. Time math works similarly to date math, by leveraging
intervals. We can add time intervals to times:

SELECT time '05:00' + interval '3 hours' as new_time;

new_time
--------
08:00:00
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We can subtract intervals from times:

SELECT time '05:00' - interval '3 hours' as new_time;

new_time
--------
02:00:00

We can also subtract times, resulting in an interval:

SELECT time '05:00' - time '03:00' as time_diff;

time_diff
---------
02:00:00

Times, unlike dates, can be multiplied:

SELECT time '05:00' * 2 as time_multiplied;

time_multiplied
---------------
10:00:00

Intervals can also be multiplied, resulting in a time value:

SELECT interval '1 second' * 2000 as interval_multiplied;

interval_multiplied
-------------------
00:33:20

SELECT interval '1 day' * 45 as interval_multiplied;

interval_multiplied
-------------------
45 days

These examples use constant values, but you can include database field names or cal‐
culations in the SQL query as well to make the calculations dynamic. Next, I’ll discuss
special date considerations to keep in mind when combining data sets from different
source systems.

Joining Data from Different Sources
Combining data from different sources is one of the most compelling use cases for a
data warehouse. However, different source systems can record dates and times in dif‐
ferent formats or different time zones or even just be off slightly due to issues with the
internal clock time of the server. Even tables from the same data source can have dif‐
ferences, though this is less common. Reconciling and standardizing dates and time‐
stamps is an important step before moving further in the analysis.
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Dates and timestamps that are in different formats can be standardized with SQL.
JOINing on dates or including date fields in UNIONs generally requires that the dates
or timestamps be in the same format. Earlier in the chapter, I showed techniques for
formatting dates and timestamps that will serve well with these problems. Take care
with time zones when combining data from different sources. For example, an inter‐
nal database may use UTC time, but data from a third party could be in a local time
zone. I have seen data sourced from software as a service (SaaS) that was recorded in
a variety of local times. Note that the timestamp values themselves won’t necessarily
have the time zone embedded. You may need to consult the vendor’s documentation
and convert the data to UTC if the rest of your data is stored that way. Another
option is to store the time zone in a field so that the timestamp value can be con‐
verted as needed.

Another thing to look out for when working with data from different sources is time‐
stamps that are slightly out of sync. This can happen when timestamps are recorded
from client devices—for example, from a laptop or mobile phone in one data source
and a server in the other data source. I once saw a series of experiment results be mis‐
calculated because the client mobile device that recorded a user’s action was offset by
a few minutes from the server that recorded the treatment group to which the user
was assigned. Data from the mobile clients appeared to arrive before the treatment
group timestamp, so some events were inadvertently excluded. A fix for something
like this is relatively straightforward: rather than filter for action timestamps greater
than the treatment group timestamp, allow events within a short interval or window
of time prior to the treatment timestamp to be included in the results. This can be
accomplished with a BETWEEN clause and date math, as seen in the last section.

When working with data from mobile apps, pay particular attention to whether the
timestamps represent when the action happened on the device or when the event
arrived in the database. The difference can range from negligible all the way up to
days, depending on whether the mobile app allows offline usage and on how it han‐
dles sending data during periods of low signal strength. Data from mobile apps can
be late-arriving or may make its way into the database days after it occurred on the
device. Dates and timestamps can also become corrupted en route, and you may see
ones that are impossibly distant in the past or future as a result.

Now that I’ve shown how to manipulate dates, datetimes, and time by changing the
formats, converting time zones, performing date math, and working across data sets
from different sources, we’re ready to get into some time series examples. First, I’ll
introduce the data set for examples in the rest of the chapter.
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The Retail Sales Data Set
The examples in the rest of this chapter use a data set of monthly US retail sales from
the Monthly Retail Trade Report: Retail and Food Services Sales: Excel (1992–
present), available on the Census.gov website. The data in this report is used as an
economic indicator to understand trends in US consumer spending patterns. While
gross domestic product (GDP) figures are published quarterly, this retail sales data is
published monthly, so it is also used to help predict GDP. For both of these reasons,
the latest figures are usually covered in the business press when they are released.

The data spans from 1992 to 2020 and includes both total sales as well as details for
subcategories of retail sales. It contains both unadjusted and seasonally adjusted
numbers. This chapter will use the unadjusted numbers, since one of the goals is ana‐
lyzing seasonality. Sales figures are in millions of US dollars. The original file format
is an Excel file, with a tab for each year and with months as columns. The GitHub site
for this book has the data in a format that’s easier to import into a database, along
with code specifically for importing into Postgres. Figure 3-1 shows a sample of the
retail_sales table.

Figure 3-1. Preview of the US retail sales data set
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Trending the Data
With time series data, we often want to look for trends in the data. A trend is simply
the direction in which the data is moving. It may be moving up or increasing over
time, or it may be moving down or decreasing over time. It can remain more or less
flat, or there could be so much noise, or movement up and down, that it’s hard to
determine a trend at all. This section will cover several techniques for trending time
series data, from simple trends for graphing to comparing components of a trend,
using percent of total calculations to compare parts to the whole, and finally indexing
to see the percent change from a reference time period.

Simple Trends
Creating a trend may be a step in profiling and understanding data, or it may be the
final output. The result set is a series of dates or timestamps and a numerical value. 
When graphing a time series, the dates or timestamps will become the x-axis, and the
numerical value will be the y-axis. For example, we can check the trend of total retail
and food services sales in the US:

SELECT sales_month
,sales
FROM retail_sales
WHERE kind_of_business = 'Retail and food services sales, total'
;

sales_month  sales
-----------  ------
1992-01-01   146376
1992-02-01   147079
1992-03-01   159336
...          ...

The results are graphed in Figure 3-2.
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Figure 3-2. Trend of monthly retail and food services sales

This data clearly has some patterns, but it also has some noise. Transforming the data
and aggregating at the yearly level can help us gain a better understanding. First, we’ll
use the date_part function to return just the year from the sales_month field and
then sum the sales. The results are filtered to the “Retail and food services sales,
total” kind_of_business in the WHERE clause:

SELECT date_part('year',sales_month) as sales_year   
,sum(sales) as sales
FROM retail_sales
WHERE kind_of_business = 'Retail and food services sales, total'
GROUP BY 1
;

sales_year  sales
----------  -------
1992.0      2014102
1993.0      2153095
1994.0      2330235
...         ...

After graphing this data, as in Figure 3-3, we now have a smoother time series that is
generally increasing over time, as might be expected, since the sales values are not
adjusted for inflation. Sales for all retail and food services fell in 2009, during the
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global financial crisis. After growing every year throughout the 2010s, sales were flat
in 2020 compared to 2019, due to the impact of the COVID-19 pandemic.

Figure 3-3. Trend of yearly total retail and food services sales

Graphing time series data at different levels of aggregation, such as weekly, monthly,
or yearly, is a good way to understand trends. This step can be used to simply profile
the data, but it can also be the final output, depending on the goals of the analysis. 
Next, we’ll turn to using SQL to compare components of a time series.

Comparing Components
Often data sets contain not just a single time series but multiple slices or components
of a total across the same time range. Comparing these slices often reveals interesting
patterns. In the retail sales data set, there are values for total sales but also a number
of subcategories. Let’s compare the yearly sales trend for a few categories that are
associated with leisure activities: book stores, sporting goods stores, and hobby stores.
This query adds kind_of_business in the SELECT clause and, since it is another
attribute rather than an aggregation, adds it to the GROUP BY clause  as well:

SELECT date_part('year',sales_month) as sales_year
,kind_of_business
,sum(sales) as sales
FROM retail_sales
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WHERE kind_of_business in ('Book stores'
 ,'Sporting goods stores','Hobby, toy, and game stores')
GROUP BY 1,2
;

sales_year  kind_of_business             sales
----------  ---------------------------  -----
1992.0      Book stores                  8327
1992.0      Hobby, toy, and game stores  11251
1992.0      Sporting goods stores        15583
...         ...                          ...

The results are graphed in Figure 3-4. Sales at sporting goods retailers started the
highest among the three categories and grew much faster during the time period, and
by the end of the time series, those sales were substantially higher. Sales at sporting
goods stores started declining in 2017 but had a big rebound in 2020. Sales at hobby,
toy, and game stores were relatively flat over this time span, with a slight dip in the
mid-2000s and another slight decline prior to a rebound in 2020. Sales at book stores
grew until the mid-2000s and have been on the decline since then. All of these cate‐
gories have been impacted by the growth of online retailers, but the timing and mag‐
nitude seem to differ.

Figure 3-4. Trend of yearly retail sales for sporting goods stores; hobby, toy, and game
stores; and book stores
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In addition to looking at simple trends, we might want to perform more complex
comparisons between parts of the time series. For the next few examples, we’ll look at
sales at women’s clothing stores and at men’s clothing stores. Note that since the
names contain apostrophes, the character otherwise used to indicate the beginning
and end of strings, we need to escape them with an extra apostrophe. This lets the
database know that the apostrophe is part of the string rather than the end. Although
we might consider adding a step in a data-loading pipeline that removes extra apos‐
trophes in names, I’ve left them in here as a demonstration of the types of code
adjustments that are often needed in the real world. First, we’ll trend the data for each
type of store by month:

SELECT sales_month
,kind_of_business
,sales
FROM retail_sales
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
;

sales_month  kind_of_business         sales
-----------  -----------------------  -----
1992-01-01   Men's clothing stores    701
1992-01-01   Women's clothing stores  1873
1992-02-01   Women's clothing stores  1991
...          ...                      ...

The results are graphed in Figure 3-5. Sales at women’s clothing retailers are much
higher than those at men’s clothing retailers. Both types of stores exhibit seasonality, a
topic I’ll cover in depth in “Analyzing with Seasonality” on page 107. Both experi‐
enced significant drops in 2020 due to store closures and a reduction in shopping
because of the COVID-19 pandemic.
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Figure 3-5. Monthly trend of sales at women’s and men’s clothing stores

The monthly data has intriguing patterns but is noisy, so we’ll use yearly aggregates
for the next few examples. We’ve seen this query format previously when rolling up
total sales and sales for leisure categories:

SELECT date_part('year',sales_month) as sales_year
,kind_of_business
,sum(sales) as sales
FROM retail_sales
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
GROUP BY 1,2
;

Are sales at women’s clothing stores uniformly higher than those at men’s clothing
stores? In the yearly trend shown in Figure 3-6, the gap between men’s and women’s
sales does not appear constant but rather was increasing during the early to
mid-2000s. Women’s clothing sales in particular dipped during the global financial
crisis of 2008–2009, and sales in both categories dropped a lot during the pandemic
in 2020.
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Figure 3-6. Yearly trend of sales at women’s and men’s clothing stores

We don’t need to rely on visual estimation, however. For more precision on this gap,
we can calculate the gap between the two categories, the ratio, and the percent differ‐
ence between them. To do this, the first step is to arrange the data so that there is a
single row for each month, with a column for each category. Pivoting the data with
aggregate functions combined with CASE statements accomplishes this:

SELECT date_part('year',sales_month) as sales_year
,sum(case when kind_of_business = 'Women''s clothing stores' 
          then sales 
          end) as womens_sales
,sum(case when kind_of_business = 'Men''s clothing stores' 
          then sales 
          end) as mens_sales
FROM retail_sales
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
GROUP BY 1
;

sales_year  womens_sales  mens_sales
----------  ------------  ----------
1992.0      31815         10179
1993.0      32350         9962
1994.0      30585         10032
...         ...           ...
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1 October and November 2020 data points were suppressed by the publisher of the data, due to concerns about
the data quality. Collecting the data likely became more difficult due to store closures during the 2020 pan‐
demic.

With this building block calculation, we can find the difference, ratio, and percent
difference between time series in the data set. The difference can be calculated by
subtracting one value from the other using the mathematical “–” operator. Depend‐
ing on the goals of the analysis, either finding the difference from men’s sales or find‐
ing the difference from women’s sales might be appropriate. Both are shown here and
are equivalent except for the sign:

SELECT sales_year
,womens_sales - mens_sales as womens_minus_mens
,mens_sales - womens_sales as mens_minus_womens
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(case when kind_of_business = 'Women''s clothing stores' 
              then sales 
              end) as womens_sales
    ,sum(case when kind_of_business = 'Men''s clothing stores' 
              then sales 
              end) as mens_sales
    FROM retail_sales
    WHERE kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    and sales_month <= '2019-12-01'
    GROUP BY 1
) a
;

sales_year  womens_minus_mens  mens_minus_womens
----------  -----------------  -----------------
1992.0      21636              -21636
1993.0      22388              -22388
1994.0      20553              -20553
...         ...                ...

The subquery is not required from a query execution standpoint, since aggregations
can be added to or subtracted from each other. A subquery is often more legible but
does add more lines to the code. Depending on how long or complex the rest of your
SQL query is, you might prefer to place the intermediate calculation in a subquery, or
just calculate it in the main query. Here is an example without the subquery, subtract‐
ing men’s sales from women’s sales, with an added WHERE clause filter to remove
2020, since a few months have null values:1

SELECT date_part('year',sales_month) as sales_year
,sum(case when kind_of_business = 'Women''s clothing stores' 
          then sales end) 
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 - 
 sum(case when kind_of_business = 'Men''s clothing stores' 
          then sales end)
 as womens_minus_mens
FROM retail_sales
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
and sales_month <= '2019-12-01'
GROUP BY 1
;

sales_year  womens_minus_mens
----------  -----------------
1992.0      21636
1993.0      22388
1994.0      20553
...         ...

Figure 3-7 shows that the gap decreased between 1992 and about 1997, began a long
increase through about 2011 (with a brief dip in 2007), and then was more or less flat
through 2019.

Figure 3-7. Yearly difference between sales at women’s and men’s clothing stores
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Let’s continue our investigation and look at the ratio of these categories. We’ll use
men’s sales as the baseline or denominator, but note that we could just as easily use
women’s store sales instead:

SELECT sales_year
,womens_sales / mens_sales as womens_times_of_mens
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(case when kind_of_business = 'Women''s clothing stores' 
              then sales 
              end) as womens_sales
    ,sum(case when kind_of_business = 'Men''s clothing stores' 
              then sales 
              end) as mens_sales
    FROM retail_sales
    WHERE kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    and sales_month <= '2019-12-01'
    GROUP BY 1
) a
;

sales_year  womens_times_of_mens
----------  --------------------
1992.0      3.1255526083112290
1993.0      3.2473398915880345
1994.0      3.0487440191387560
...         ...

SQL returns a lot of decimal digits when performing division. You
should generally consider rounding the result before presenting the
analysis. Use the level of precision (number of decimal places) that
tells the story.

Plotting the result, shown in Figure 3-8, reveals that the trend is similar to the differ‐
ence trend, but while there was a drop in the difference in 2009, the ratio actually
increased.
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Figure 3-8. Yearly ratio of women’s to men’s clothing sales

Next, we can calculate the percent difference between sales at women’s and men’s
clothing stores:

SELECT sales_year
,(womens_sales / mens_sales - 1) * 100 as womens_pct_of_mens
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(case when kind_of_business = 'Women''s clothing stores' 
              then sales 
              end) as womens_sales
    ,sum(case when kind_of_business = 'Men''s clothing stores' 
              then sales 
              end) as mens_sales
    FROM retail_sales
    WHERE kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    and sales_month <= '2019-12-01'
    GROUP BY 1
) a
;
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sales_year  womens_pct_of_mens
----------  --------------------
1992.0      212.5552608311229000
1993.0      224.7339891588034500
1994.0      204.8744019138756000
...         ...

Although the units for this output are different from those in the previous example,
the shape of this graph is the same as that of the ratio graph. The choice of which to
use depends on your audience and the norms in your domain. All of these statements
are accurate: in 2009, sales at women’s clothing stores were $28.7 billion higher than
sales at men’s stores; in 2009, sales at women’s clothing stores were 4.9 times the sales
at men’s stores; in 2009, sales at women’s stores were 390% higher than sales at men’s
stores. Which version to select depends on the story you want to tell with the
analysis.

The transformations we’ve seen in this section allow us to analyze time series by com‐
paring related parts. The next section will continue the theme of comparing time ser‐
ies by showing ways to analyze series that represent parts of a whole.

Percent of Total Calculations
When working with time series data that has multiple parts or attributes that consti‐
tute a whole, it’s often useful to analyze each part’s contribution to the whole and
whether that has changed over time. Unless the data already contains a time series of
the total values, we’ll need to calculate the overall total in order to calculate the per‐
cent of total for each row. This can be accomplished with a self-JOIN, or a window
function, which as we saw in Chapter 2 is a special kind of SQL function that can ref‐
erence any row within a specified partition of the table.

First I’ll show the self-JOIN method. A self-JOIN is any time a table is joined to itself.
As long as each instance of the table in the query is given a different alias, the data‐
base will treat them all as distinct tables. For example, to find the percent of com‐
bined men’s and women’s clothing sales that each series represents, we can JOIN
retail_sales, aliased as a, to retail_sales, aliased as b, on the sales_month field.
We then SELECT the individual series name (kind_of_business) and sales values
from alias a. Then, from alias b we sum the sales for both categories and call the
result total_sales. Note that the JOIN between the tables on the sales_month field
creates a partial Cartesian JOIN, which results in two rows from alias b for each row
in alias a. Grouping by a.sales_month, a.kind_of_business, and a.sales and
aggregating b.sales returns exactly the results needed, however. In the outer query,
the percent of total for each row is calculated by dividing sales by total_sales:

SELECT sales_month
,kind_of_business
,sales * 100 / total_sales as pct_total_sales
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FROM
(
    SELECT a.sales_month, a.kind_of_business, a.sales
    ,sum(b.sales) as total_sales
    FROM retail_sales a
    JOIN retail_sales b on a.sales_month = b.sales_month
    and b.kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    WHERE a.kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    GROUP BY 1,2,3
) aa
;

sales_month  kind_of_business         pct_total_sales
-----------  -----------------------  -------------------
1992-01-01   Men's clothing stores    27.2338772338772339
1992-01-01   Women's clothing stores  72.7661227661227661
1992-02-01   Men's clothing stores    24.8395620989052473
...          ...                      ...

The subquery isn’t required here, as the same result could be obtained without it, but
it makes the code a little easier to follow. A second way to calculate the percent of
total sales for each category is to use the sum window function and PARTITION BY
the sales_month. Recall that the PARTITION BY clause indicates the section of the
table within which the function should calculate. The ORDER BY clause is not
required in this sum window function, because the order of calculation doesn’t matter.
Additionally, the query does not need a GROUP BY clause, because window functions
look across multiple rows, but they do not reduce the number of rows in the result
set:

SELECT sales_month, kind_of_business, sales
,sum(sales) over (partition by sales_month) as total_sales
,sales * 100 / sum(sales) over (partition by sales_month) as pct_total
FROM retail_sales 
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
;

sales_month  kind_of_business         sales  total_sales  pct_total
-----------  -----------------------  -----  -----------  ---------
1992-01-01   Men's clothing stores    701    2574         27.233877
1992-01-01   Women's clothing stores  1873   2574         72.766122
1992-02-01   Women's clothing stores  1991   2649         75.160437
...          ...                      ...    ...          ...

Graphing this data, as in Figure 3-9, reveals some interesting trends. First, starting in
the late 1990s, women’s clothing store sales became an increasing percentage of the
total.  Second, early in the series a seasonal pattern is evident, where men’s sales spike
as a percent of total sales in December and January. In the first decade of the 21st

Trending the Data | 87



century, two seasonal peaks appear, in the summer and the winter, but by the late
2010s, the seasonal patterns are dampened almost to the point of randomness. We’ll
take a look at analyzing seasonality in greater depth later in this chapter.

Figure 3-9. Men’s and women’s clothing store sales as percent of monthly total

Another percent of total we might want to find is the percent of sales within a longer
time period, such as the percent of yearly sales each month represents. Again, either a
self-JOIN or a window function will do the job. In this example, we’ll use a self-JOIN
in the subquery:

SELECT sales_month
,kind_of_business
,sales * 100 / yearly_sales as pct_yearly
FROM
(
    SELECT a.sales_month, a.kind_of_business, a.sales
    ,sum(b.sales) as yearly_sales
    FROM retail_sales a
    JOIN retail_sales b on 
     date_part('year',a.sales_month) = date_part('year',b.sales_month)
     and a.kind_of_business = b.kind_of_business
     and b.kind_of_business in ('Men''s clothing stores'
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      ,'Women''s clothing stores')
    WHERE a.kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    GROUP BY 1,2,3
) aa
;

sales_month  kind_of_business       pct_yearly
-----------  ---------------------  ------------------
1992-01-01   Men's clothing stores  6.8867275763827488
1992-02-01   Men's clothing stores  6.4642892229099126
1992-03-01   Men's clothing stores  7.1814520090382159
...          ...                    ...

Alternatively, the window function method can be used:

SELECT sales_month, kind_of_business, sales
,sum(sales) over (partition by date_part('year',sales_month)
                               ,kind_of_business
                               ) as yearly_sales
,sales * 100 / 
 sum(sales) over (partition by date_part('year',sales_month)
                               ,kind_of_business
                               ) as pct_yearly
FROM retail_sales 
WHERE kind_of_business in ('Men''s clothing stores'
 ,'Women''s clothing stores')
;

sales_month  kind_of_business       pct_yearly
-----------  ---------------------  ------------------
1992-01-01   Men's clothing stores  6.8867275763827488
1992-02-01   Men's clothing stores  6.4642892229099126
1992-03-01   Men's clothing stores  7.1814520090382159
...          ...                    ...

The results, zoomed in to 2019, are shown in Figure 3-10. The two time series track
fairly closely, but men’s stores had a greater percentage of their sales in January than
did women’s stores. Men’s stores had a summer dip in July, while the corresponding
dip in women’s store sales wasn’t until September.
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Figure 3-10. Percent of yearly sales for 2019 for women’s and men’s clothing sales

Now that I’ve shown how to use SQL for percent of total calculations and the types of
analysis that can be accomplished, I’ll turn to indexing and calculating percent
change over time.

Indexing to See Percent Change over Time
The values in time series usually fluctuate over time. Sales increase with growing pop‐
ularity and availability of a product, while web page response time decreases with
engineers’ efforts to optimize code. Indexing data is a way to understand the changes
in a time series relative to a base period (starting point). Indices are widely used in
economics as well as business settings. One of the most famous indices is the Con‐
sumer Price Index (CPI), which tracks the change in the prices of items that a typical
consumer purchases and is used to track inflation, to decide salary increases, and for
many other applications. The CPI is a complex statistical measure using various
weights and data inputs, but the basic premise is straightforward. Pick a base period
and compute the percent change in value from that base period for each subsequent
period.
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Indexing time series data with SQL can be done with a combination of aggregations
and window functions, or self-JOINs. As an example, we index women’s clothing
store sales to the first year in the series, 1992. The first step is to aggregate the sales
by sales_year in a subquery, as we’ve done previously. In the outer query, the
first_value window function finds the value associated with the first row in the
PARTITION BY clause, according to the sort in the ORDER BY clause. In this exam‐
ple, we can omit the PARTITION BY clause, because we want to return the sales
value for the first row in the entire data set returned by the subquery:

SELECT sales_year, sales
,first_value(sales) over (order by sales_year) as index_sales
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(sales) as sales
    FROM retail_sales
    WHERE kind_of_business = 'Women''s clothing stores'
    GROUP BY 1
) a
;

sales_year  sales  index_sales
----------  -----  -----------
1992.0      31815  31815
1993.0      32350  31815
1994.0      30585  31815
...         ...    ...

With this sample of data, we can visually verify that the index value is correctly set at
the value for 1992. Next, find the percent change from this base year for each row:

SELECT sales_year, sales
,(sales / first_value(sales) over (order by sales_year) - 1) * 100 
 as pct_from_index
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(sales) as sales
    FROM retail_sales
    WHERE kind_of_business = 'Women''s clothing stores'
    GROUP BY 1
) a
;

sales_year  sales  pct_from_index
----------  -----  --------------
1992.0      31815  0
1993.0      32350  1.681596731101
1994.0      30585  -3.86610089580
...         ...    ...
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The percent change can be either positive or negative, and we’ll see that does in fact
occur in this time series. The last_value window function could be substituted for
first_value in this query. Indexing from the last value in a series is much less com‐
mon, however, since analysis questions more often relate to change from a starting
point rather than looking back from an arbitrary ending point; still, the option is
there. Additionally, the sort order can be used to achieve indexing from the first or
last value by switching between ASC and DESC:

first_value(sales) over (order by sales_year desc)

Window functions provide a lot of flexibility. Indexing can be accomplished without
them through a series of self-JOINs, though more lines of code are required:

SELECT sales_year, sales
,(sales / index_sales - 1) * 100 as pct_from_index
FROM
(
    SELECT date_part('year',aa.sales_month) as sales_year
    ,bb.index_sales
    ,sum(aa.sales) as sales
    FROM retail_sales aa
    JOIN 
    (
        SELECT first_year, sum(a.sales) as index_sales
        FROM retail_sales a
        JOIN 
        (
            SELECT min(date_part('year',sales_month)) as first_year
            FROM retail_sales
            WHERE kind_of_business = 'Women''s clothing stores'
        ) b on date_part('year',a.sales_month) = b.first_year 
        WHERE a.kind_of_business = 'Women''s clothing stores'
        GROUP BY 1
    ) bb on 1 = 1
    WHERE aa.kind_of_business = 'Women''s clothing stores'
    GROUP BY 1,2
) aaa
;

sales_year  sales  pct_from_index
----------  -----  --------------
1992.0      31815  0
1993.0      32350  1.681596731101
1994.0      30585  -3.86610089580
...         ...    ...
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Notice the unusual JOIN clause on 1 = 1 between alias aa and subquery bb. Since we
want the index_sales value to populate for every row in the result set, we can’t JOIN
on the year or any other value, which would restrict the results. However, the data‐
base will return an error if no JOIN clause is specified. We can fool the database by
using any expression that evaluates to TRUE in order to create the desired Cartesian
JOIN. Any other TRUE statement, such as on 2 = 2 or on 'apples' = 'apples',
could be used instead.

Beware of zeros in the denominator of division operations such as
sales / index_sales in the last example. Databases return an
error when they encounter division by zero, which can be frustrat‐
ing. Even when you think a zero in the denominator field is
unlikely, it’s good practice to prevent this by telling the database to
return an alternate default value when it encounters a zero. This
can be done with a CASE statement. The examples in this section
do not have zeros in the denominator, so I will omit this extra code
for the sake of legibility.

To wrap up this section, let’s look at a graph of the indexed time series for men’s and
women’s clothing stores, shown in Figure 3-11. The SQL code looks like:

SELECT sales_year, kind_of_business, sales
,(sales / first_value(sales) over (partition by kind_of_business 
                                   order by sales_year)
 - 1) * 100 as pct_from_index
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,kind_of_business
    ,sum(sales) as sales
    FROM retail_sales
    WHERE kind_of_business in ('Men''s clothing stores'
     ,'Women''s clothing stores')
    and sales_month <= '2019-12-31'
    GROUP BY 1,2
) a
;
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Figure 3-11. Men’s and women’s clothing store sales, indexed to 1992 sales

It’s apparent from this graph that 1992 was something of a high-water mark for sales
at men’s clothing stores. After 1992 sales dropped, then returned briefly to the same
level in 1998, and have been declining ever since. This is striking since the data set is
not adjusted for inflation, the tendency for prices to rise over time. Sales at women’s
clothing stores decreased from 1992 levels initially, but they returned to the 1992 level
by 2003. They have increased since, with the exception of the drop during the finan‐
cial crisis that decreased sales in 2009 and 2010. One explanation for these trends is
that men simply decreased spending on clothes over time, perhaps becoming less
fashion conscious relative to women. Perhaps men’s clothing simply became less
expensive as global supply chains decreased costs. Yet another explanation might be
that men shifted their clothing purchases from retailers categorized as “men’s clothing
stores” to other types of retailers, such as sporting goods stores or online retailers.

Indexing time series data is a powerful analysis technique, allowing us to find a range
of insights in the data. SQL is well suited to this task, and I’ve shown how to construct
indexed time series with and without window functions. Next, I’ll show you how to
analyze data by using rolling time windows to find patterns in noisy time series.
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Rolling Time Windows
Time series data is often noisy, a challenge for one of our primary goals of finding
patterns. We’ve seen how aggregating data, such as from monthly to yearly, can
smooth out the results and make them easier to interpret. Another technique for
smoothing data is rolling time windows, also known as moving calculations, that take
into account multiple periods. Moving averages are probably the most common, but
with the power of SQL, any aggregate function is available for analysis. Rolling time
windows are used in a wide variety of analysis areas, including stock markets, macro‐
economic trends, and audience measurement. Some calculations are so commonly
used that they have their own acronyms: last twelve months (LTM), trailing twelve
months (TTM), and year-to-date (YTD).

Figure 3-12 shows an example of a rolling time window and a cumulative calculation,
relative to the month of October in the time series.

Figure 3-12. Example of LTM and YTD rolling sum of sales

There are several important pieces of any rolling time series calculation. First is the
size of the window, which is the number of periods to include in the calculation.
Larger windows with more time periods have a greater smoothing effect, but at the
risk of losing sensitivity to important short-term changes in the data. Shorter win‐
dows with fewer time periods do less smoothing and thus are more sensitive to short-
term changes, but at the risk of too little noise reduction.

The second piece of time series calculations is the aggregate function used. As noted
previously, moving averages are probably the most common. Moving sums, counts,

Rolling Time Windows | 95



minimums, and maximums can also be calculated with SQL. Moving counts are use‐
ful in user population metrics (see the following sidebar). Moving minimums and
maximums can help in understanding the extremes of the data, useful for planning
analyses.

The third piece of time series calculations is choosing the partitioning, or grouping,
of the data that is included in the window. The analysis might call for resetting the
window every year. Or the analysis might need a different moving series for each
component or user group. Chapter 4 will go into more detail on cohort analysis of
user groups, where we will consider how retention and cumulative values such as
spend differ between populations over time. Partitioning will be controlled through
grouping as well as the PARTITION BY statement of window functions.

With these three pieces in mind, we’ll move into the SQL code and calculations for
moving time periods, continuing with the US retail sales data set for examples.

Measuring “Active Users”: DAU, WAU, and MAU
Many consumer and some B2B SaaS applications use active user calculations such as
daily active users (DAU), weekly active users (WAU), and monthly active users
(MAU) to estimate their audience size. Since each of these are rolling windows, they
can be calculated on a daily basis. I’ve often been asked what is the right or best met‐
ric to use, and my answer is always “it depends.”

DAU helps companies with capacity planning, such as estimating how much load
to expect on servers. Depending on the service, however, even more detailed data
might be needed, such as peak hourly or even minute-by-minute concurrent user
information.

MAU is commonly used to estimate relative sizes of applications or services. It is use‐
ful for measuring fairly stable or growing user populations that have regular usage
patterns that aren’t necessarily daily, such as higher use on the weekend for leisure
products, or higher weekday use for work- or school-related products. MAU is not as
well suited to detecting changes in underlying churn from users who stop using an
application. Since it takes a user 30 days, the most common window, to pass through
MAU, a user can have been absent from the product for 29 days before they trigger a
drop in MAU.

WAU, calculated over 7 days, can be a happy medium between DAU and MAU. WAU
is more sensitive to short-term fluctuations, alerting teams to changes in churn more
quickly than MAU while smoothing over day of week fluctuations that are tracked by
DAU. A drawback to WAU is that it is still sensitive to short-term fluctuations driven
by events such as holidays.
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Calculating Rolling Time Windows
Now that we know what rolling time windows are, how they’re useful, and their key
components, let’s get into calculating them using the US retail sales data set. We’ll
start with the simpler case, when the data set contains a record for each period that
should be in the window, and then in the next section we’ll look at what to do when
this is not the case.

There are two main methods for calculating a rolling time window: a self-JOIN,
which can be used in any database, and a window function, which as we’ve seen isn’t
available in some databases. In both cases we need the same result: a date and a num‐
ber of data points that corresponds to the size of the window to which we will apply
an average or another aggregate function.

For this example, we’ll use a window of 12 months to get rolling annual sales, since
the data is at a monthly level of granularity. We’ll then apply an average to get a 12-
month moving average of retail sales. First, let’s develop the intuition for what will go
into the calculation. In this query, alias a of the table is our “anchor” table, the one
from which we gather the dates. To start, we’ll look at a single month, December
2019. From alias b, the query gathers the 12 individual months of sales that will go
into the moving average. This is accomplished with the JOIN clause b.sales_month
between a.sales_month - interval '11 months' and a.sales_month, which cre‐
ates an intentional Cartesian JOIN:

SELECT a.sales_month
,a.sales
,b.sales_month as rolling_sales_month
,b.sales as rolling_sales
FROM retail_sales a
JOIN retail_sales b on a.kind_of_business = b.kind_of_business 
 and b.sales_month between a.sales_month - interval '11 months' 
 and a.sales_month
 and b.kind_of_business = 'Women''s clothing stores'
WHERE a.kind_of_business = 'Women''s clothing stores'
and a.sales_month = '2019-12-01'
;

sales_month  sales  rolling_sales_month  rolling_sales
-----------  -----  -------------------  -------------
2019-12-01   4496   2019-01-01           2511
2019-12-01   4496   2019-02-01           2680
2019-12-01   4496   2019-03-01           3585
2019-12-01   4496   2019-04-01           3604
2019-12-01   4496   2019-05-01           3807
2019-12-01   4496   2019-06-01           3272
2019-12-01   4496   2019-07-01           3261
2019-12-01   4496   2019-08-01           3325
2019-12-01   4496   2019-09-01           3080
2019-12-01   4496   2019-10-01           3390
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2019-12-01   4496   2019-11-01           3850
2019-12-01   4496   2019-12-01           4496

Notice that the sales_month and sales figures from alias a are repeated for each row
of the 12 months in the window.

Remember that the dates in a BETWEEN clause are inclusive (both
will be returned in the result set). It’s a common mistake to use 12
instead of 11 in the preceding query. When in doubt, check the
intermediate query results as I’ve done here to make sure the
intended number of periods ends up in the window calculation.

The next step is to apply the aggregation—in this case, avg, since we want a rolling
average. The count of records returned from alias b is included to confirm that each
row averages 12 data points, a useful data quality check. Alias a also has a filter on
sales_month. Since this data set starts in 1992, months in that year, except for
December, have fewer than 12 historical records:

SELECT a.sales_month
,a.sales
,avg(b.sales) as moving_avg
,count(b.sales) as records_count
FROM retail_sales a
JOIN retail_sales b on a.kind_of_business = b.kind_of_business 
 and b.sales_month between a.sales_month - interval '11 months' 
 and a.sales_month
 and b.kind_of_business = 'Women''s clothing stores'
WHERE a.kind_of_business = 'Women''s clothing stores'
and a.sales_month >= '1993-01-01'
GROUP BY 1,2
;

sales_month  sales  moving_avg  records_count
-----------  -----  ----------  -------------
1993-01-01   2123   2672.08     12
1993-02-01   2005   2673.25     12
1993-03-01   2442   2676.50     12
...          ...    ...         ...

The results are graphed in Figure 3-13. While the monthly trend is noisy, the
smoothed moving average trend makes detecting changes such as the increase from
2003 to 2007 and the subsequent dip through 2011 easier to spot. Notice that the
extreme drop in early 2020 pulls the moving average down even after sales start to
rebound later in the year.
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Figure 3-13. Monthly sales and 12-month moving average sales for women’s clothing
stores

Adding the filter kind_of_business = 'Women''s clothing

stores' to each alias isn’t strictly necessary. Since the query uses an
INNER JOIN, filtering on one table will automatically filter on the
other. However, filtering on both tables often makes queries run
faster, particularly when the tables are large.

Window functions are another way to calculate rolling time windows. To make a roll‐
ing window, we need to use another optional part of a window calculation: the frame
clause. The frame clause allows you to specify which records to include in the win‐
dow. By default, all records in the partition are included, and for many cases this
works just fine. However, controlling the included records at a more fine-grained
level is useful for cases like moving window calculations. The syntax is simple and yet
can be confusing when encountering it for the first time. The frame clause can be
specified as:

{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end
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Within the curly braces are three options for the frame type: range, rows, and groups. 
These are the ways you can specify which records to include in the result, relative to
the current row. Records are always chosen from the current partition and follow the
ORDER BY specified. The default sorting is ascending (ASC), but it can be changed to
descending (DESC). Rows is the most straightforward and will allow you to specify
the exact number of rows that should be returned. Range includes records that are
within some boundary of values relative to the current row. Groups can be used when
there are multiple records with the same ORDER BY value, such as when a data set
includes multiple lines per sales month, one for each customer.

The frame_start and frame_end can be any of the following:

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING

Preceding means to include rows before the current row, according to the ORDER BY
sorting. Current row is just that, and following means to include rows that occur after
the current row according to the ORDER BY sorting. The UNBOUNDED keyword
means to include all records in the partition before or after the current row. The offset
is the number of records, often just an integer constant, though a field or an expres‐
sion that returns an integer could also be used. Frame clauses also have an optional
frame_exclusion option, which is beyond the scope of the discussion here. Figure 3-14
shows an example of the rows that each of the window frame options will pick up.

Figure 3-14. Window frame clauses and the rows they include
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From partition to ordering to window frames, window functions have a variety of
options that control the calculations, making them incredibly powerful and well
suited to tackling complex calculations with relatively simple syntax. Returning to our
retail sales example, the moving average that we calculated using a self-JOIN can be
accomplished with window functions in fewer lines of code:

SELECT sales_month
,avg(sales) over (order by sales_month 
                  rows between 11 preceding and current row
                  ) as moving_avg
,count(sales) over (order by sales_month 
                  rows between 11 preceding and current row
                  ) as records_count
FROM retail_sales
WHERE kind_of_business = 'Women''s clothing stores'
;

sales_month  moving_avg  records_count
-----------  ----------  -------------
1992-01-01   1873.00     1
1992-02-01   1932.00     2
1992-03-01   2089.00     3
...          ...         ...
1993-01-01   2672.08     12
1993-02-01   2673.25     12
1993-03-01   2676.50     12
...          ...         ...

In this query, the window orders the sales by month (ascending) to ensure that the
window records are in chronological order.  The frame clause is rows between 11
preceding and current row, since I know that I have one record for each month
and I want the 11 prior months and the month from the current row included in the
average and count calculations. The query returns all months, including those that
don’t have 11 prior months, and we might want to filter these out by placing this
query in a subquery and filtering by month or number of records in the outer query.

While calculating moving averages from prior time periods is com‐
mon in many business contexts, SQL window functions are flexible
enough to include future time periods as well. They can also be
used in any scenario in which the data has some ordering, not just
in time series analysis.

Calculating rolling averages or other moving aggregations can be accomplished with
self-JOINs or window functions when records exist in the data set for each time
period in the window. There may be performance differences between the two meth‐
ods, depending on the type of database and the size of the data set. Unfortunately, it’s
difficult to predict which one will be performant or to give general advice on which to
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use. It’s worth trying both methods and paying attention to how long it takes to
return your query results; then make whichever one seems to run faster your default
choice. Now that we’ve seen how to calculate rolling time windows, I’ll show how to
calculate rolling windows with sparse data sets.

Rolling Time Windows with Sparse Data
Data sets in the real world may not contain a record for every time period that falls
within the window. The measurement of interest might be seasonal or intermittent by
nature. For example, customers might return to purchase from a website at irregular
intervals, or a particular product might go in and out of stock. This results in sparse
data.

In the last section, I showed how to calculate a rolling window with a self-JOIN and a
date interval in the JOIN clause. You might be thinking that this will pick up any
records within the 12-month time window, whether all were in the data set or not,
and you’d be correct. The problem with this approach comes when there is no record
for the month (or day or year) itself. For example, imagine I want to calculate the roll‐
ing 12-month sales for each model of shoe my store stocks as of December 2019.
Some of the shoes went out of stock prior to December, however, and so don’t have
sales records in that month. Using a self-JOIN or window function will return a data
set of rolling sales for all the shoes that sold in December, but the data will be missing
the shoes that went out of stock. Fortunately, we have a way to solve this problem: by
using a date dimension.

The date dimension, a static table that contains a row for each calendar date, was
introduced in Chapter 2. With such a table we can ensure that a query returns a result
for every date of interest, whether or not there was a data point for that date in the
underlying data set. Since the retail_sales data does include rows for all months,
I’ve simulated a sparse data set by adding a subquery to filter the table to only
sales_months from January and July (1 and 7). Let’s look at the results when JOINed
to the date_dim, but before aggregation, to develop intuition about the data before
applying calculations:

SELECT a.date, b.sales_month, b.sales
FROM date_dim a
JOIN 
(
    SELECT sales_month, sales
    FROM retail_sales 
    WHERE kind_of_business = 'Women''s clothing stores'
     and date_part('month',sales_month) in (1,7)
) b on b.sales_month between a.date - interval '11 months' and a.date
WHERE a.date = a.first_day_of_month
 and a.date between '1993-01-01' and '2020-12-01'
;

102 | Chapter 3: Time Series Analysis



date        sales_month  sales
----------  -----------  -----
1993-01-01  1992-07-01   2373
1993-01-01  1993-01-01   2123
1993-02-01  1992-07-01   2373
1993-02-01  1993-01-01   2123
1993-03-01  1992-07-01   2373
...         ...          ...

Notice that the query returns results for February and March dates in addition to
January, even though there are no sales for these months in the subquery results. This
is possible because the date dimension contains records for all months. The filter
a.date = a.first_day_of_month restricts the result set to one value per month,
instead of the 28 to 31 rows per month that would result from joining to every date.
The construction of this query is otherwise very similar to the self-JOIN query in the
last section, with the JOIN clause on b.sales_month between a.date - interval
'11 months' and a.date of the same form as the JOIN clause in the self-JOIN. Now
that we have developed an understanding of what the query will return, we can go
ahead and apply the avg aggregation to get the moving average:

SELECT a.date
,avg(b.sales) as moving_avg
,count(b.sales) as records
FROM date_dim a
JOIN 
(
    SELECT sales_month, sales
    FROM retail_sales 
    WHERE kind_of_business = 'Women''s clothing stores'
     and date_part('month',sales_month) in (1,7)
) b on b.sales_month between a.date - interval '11 months' and a.date
WHERE a.date = a.first_day_of_month
 and a.date between '1993-01-01' and '2020-12-01'
GROUP BY 1
;

date        moving_avg  records
----------  ----------  -------
1993-01-01  2248.00     2
1993-02-01  2248.00     2
1993-03-01  2248.00     2
...         ...         ...

As we saw above, the result set includes a row for every month; however, the moving
average stays constant until a new data point (in this case, a January or July) is added.
Each moving average consists of two underlying data points. In a real use case, the
number of underlying data points is likely to vary. To return the current month’s
value when using a data dimension, an aggregation with a CASE statement can be
used—for example:
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,max(case when a.date = b.sales_month then b.sales end) 
 as sales_in_month

The conditions inside the CASE statement can be changed to return any of the
underlying records that the analysis requires through use of equality, inequality, or
offsets with date math. If a date dimension is not available in your database, then
another technique can be used to simulate one. In a subquery, SELECT the DIS‐
TINCT dates needed and JOIN them to your table in the same way as in the preceding
examples:

SELECT a.sales_month, avg(b.sales) as moving_avg
FROM
(
    SELECT distinct sales_month
    FROM retail_sales
    WHERE sales_month between '1993-01-01' and '2020-12-01'
) a
JOIN retail_sales b on b.sales_month between 
 a.sales_month - interval '11 months' and a.sales_month
 and b.kind_of_business = 'Women''s clothing stores' 
GROUP BY 1
;

sales_month  moving_avg
-----------  ----------
1993-01-01   2672.08
1993-02-01   2673.25
1993-03-01   2676.50
...          ...

In this example, I used the same underlying table because I know it contains all the
months. However, in practice any database table that contains the needed dates can be
used, whether or not it is related to the table from which you want to calculate the
rolling aggregation.

Calculating rolling time windows with sparse or missing data can be done in SQL
with controlled application of Cartesian JOINs. Next, we’ll look at how to calculate
cumulative values that are often used in analysis.

Calculating Cumulative Values
Rolling window calculations, such as moving averages, typically use fixed-size win‐
dows, such as 12 months, as we saw in the last section.  Another commonly used type
of calculation is the cumulative value, such as YTD, quarter-to-date (QTD), and
month-to-date (MTD). Rather than a fixed-length window, these rely on a common
starting point, with the window size growing with each row.
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The simplest way to calculate cumulative values is with a window function. In this
example, sum is used to find total sales YTD as of each month. Other analyses might
call for a monthly average YTD or a monthly maximum YTD, which can be accom‐
plished by swapping sum for avg or max. The window resets according to the PARTI‐
TION BY clause, in this case the year of the sales month. The ORDER BY clause
typically includes a date field in time series analysis. Omitting the ORDER BY can
lead to incorrect results due to the way the data is sorted in the underlying table, so
it’s a good idea to include it even if you think the data is already sorted by date:

SELECT sales_month, sales
,sum(sales) over (partition by date_part('year',sales_month) 
                  order by sales_month
                  ) as sales_ytd
FROM retail_sales
WHERE kind_of_business = 'Women''s clothing stores'
;

sales_month  sales  sales_ytd
-----------  -----  ---------
1992-01-01   1873   1873
1992-02-01   1991   3864
1992-03-01   2403   6267
...          ...    ...
1992-12-01   4416   31815
1993-01-01   2123   2123
1993-02-01   2005   4128
...          ...    ...

The query returns a record for each sales_month, the sales for that month, and the
running total sales_ytd. The series starts in 1992 and then resets in January 1993, as
it will for every year in the data set. The results for years 2016 through 2020 are
graphed in Figure 3-15. The first four years show similar patterns through the year,
but of course 2020 looks very different.
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Figure 3-15. Monthly sales and cumulative annual sales for women’s clothing stores

The same results can be achieved without window functions, by using a self-JOIN
that leverages a Cartesian JOIN. In this example, the two table aliases are JOINed on
the year of the sales_month to ensure that the aggregated values are for the same
year, resetting each year. The JOIN clause also specifies that the results should include
sales_months from alias b that are less than or equal to the sales_month in alias a. In
January 1992, only the January 1992 row from alias b meets this criterion; in February
1992, both January and February 1992 do; and so on:

SELECT a.sales_month, a.sales
,sum(b.sales) as sales_ytd
FROM retail_sales a
JOIN retail_sales b on 
 date_part('year',a.sales_month) = date_part('year',b.sales_month)
 and b.sales_month <= a.sales_month
 and b.kind_of_business = 'Women''s clothing stores'
WHERE a.kind_of_business = 'Women''s clothing stores'
GROUP BY 1,2
;
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sales_month  sales  sales_ytd
-----------  -----  ---------
1992-01-01   1873   1873
1992-02-01   1991   3864
1992-03-01   2403   6267
...          ...    ...
1992-12-01   4416   31815
1993-01-01   2123   2123
1993-02-01   2005   4128
...          ...    ...

Window functions require fewer characters of code, and it’s usually easier to keep
track of exactly what they are calculating once you are familiar with the syntax.
There’s often more than one way to approach a problem in SQL, and rolling time
windows are a good example of that. I find it useful to know multiple approaches,
because every once in a while I run into a tricky problem that is actually better solved
with an approach that seems less efficient in other contexts. Now that we’ve covered
rolling time windows, we’ll move on to our final topic in time series analysis with
SQL: seasonality.

Analyzing with Seasonality
Seasonality is any pattern that repeats over regular intervals. Unlike other noise in the
data, seasonality can be predicted. The word seasonality brings to mind the four sea‐
sons of the year—spring, summer, fall, winter—and some data sets include these pat‐
terns. Shopping patterns change with the seasons, from the clothes and food people
buy to the money spent on leisure and travel. The winter holiday shopping season can
be make-or-break for many retailers. Seasonality can also exist at other time scales,
from years down to minutes. Presidential elections in the United States happen every
four years, leading to distinct patterns in media coverage.  Day of week cyclicality is 
common, as work and school dominate Monday to Friday, while chores and leisure
activities dominate the weekend. Time of day is another type of seasonality that res‐
taurants experience, with rushes around lunch and dinner time and slower sales in
between.

To understand whether seasonality exists in a time series, and at what scale, it’s useful
to graph it and then visually inspect for patterns. Try aggregating at different levels,
from hourly to daily, weekly, and monthly. You should also incorporate knowledge
about the data set. Are there patterns that you can guess based on what you know
about the entity or process it represents? Consult subject matter experts, if available.

Let’s take a look at some seasonal patterns in the retail sales data set, shown in
Figure 3-16. Jewelry stores have a highly seasonal pattern, with annual peaks in
December related to holiday gift giving. Book stores have two peaks each year: one
peak is in August, corresponding with back-to-school time in the United States; the
other peak starts in December and lasts through January, including both the holiday
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gift period and back-to-school time for the spring semester. A third example is gro‐
cery stores, which have much less monthly seasonality than the other two time series
(although they likely have seasonality at the day of week and time of day level). This
isn’t surprising: people need to eat year-round. Grocery store sales increase a bit in
December for the holidays, and they decline in February, since that month simply has
fewer days.

Figure 3-16. Examples of seasonality patterns in book store, grocery store, and jewelry
store sales

Seasonality can take many forms, though there are some common approaches to ana‐
lyzing it regardless. One way to deal with seasonality is to smooth it out, either by
aggregating the data to a less granular time period or by using rolling windows, as we
saw previously. Another way to work with seasonal data is to benchmark against sim‐
ilar time periods and analyze the difference. I’ll show several ways to accomplish this
next.
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Period-over-Period Comparisons: YoY and MoM
Period-over-period comparisons can take multiple forms. The first one is to compare
a time period to the previous value in the series, a practice so common in analysis
that there are acronyms for the most often-used comparisons. Depending on the level
of aggregation the comparison might be year-over-year (YoY), month-over-month
(MoM), day-over-day (DoD), and so on.

For these calculations we’ll use the lag function, another one of the window func‐
tions. The lag function returns a previous or lagging value from a series. The lag
function has the following form:

lag(return_value [,offset [,default]])

The return_value is any field from the data set and thus can be any data type. The
optional OFFSET indicates how many rows back in the partition to take the
return_value from. The default is 1, but any integer value can be used. You can also
optionally specify a default value to use if there is no lagging record to retrieve a
value from. Like other window functions, lag is also calculated over a partition, with
sorting determined by the ORDER BY clause. If no PARTITION BY clause is speci‐
fied, lag looks back over the whole data set, and likewise if no ORDER BY clause is
specified, the database order is used. It’s usually a good idea to at least include an
ORDER BY clause in a lag window function to control the output.

The lead window function works in the same way as the lag func‐
tion, except that it returns a subsequent value as determined by the
offset. Changing the ORDER BY from ascending (ASC) to descend‐
ing (DESC) in a time series has the effect of turning a lag statement
into the equivalent of a lead statement. Alternatively, a negative
integer can be used as the OFFSET value to return a value from a
subsequent row.

Let’s apply this to our retail sales data set to calculate MoM and YoY growth. In this
section, we’ll focus on book store sales, since I’m a real book store nerd. First, we’ll
develop our intuition about what is returned by the lag function by returning both
the lagging month and the lagging sales values:

SELECT kind_of_business, sales_month, sales
,lag(sales_month) over (partition by kind_of_business 
                        order by sales_month
                        ) as prev_month
,lag(sales) over (partition by kind_of_business 
                  order by sales_month
                  ) as prev_month_sales
FROM retail_sales
WHERE kind_of_business = 'Book stores'
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;

kind_of_business  sales_month  sales  prev_month  prev_month_sales
----------------  -----------  -----  ----------  ----------------
Book stores       1992-01-01   790    (null)      (null)
Book stores       1992-02-01   539    1992-01-01  790
Book stores       1992-03-01   535    1992-02-01  539
...               ...          ...    ...         ...

For each row, the previous sales_month is returned, as well as the sales for that
month, and we can confirm this by inspecting the first few lines of the result set. The
first row has null for prev_month and prev_month_sales since there is no earlier
record in this data set. With an understanding of the values returned by the lag func‐
tion, we can calculate the percent change from the previous value:

SELECT kind_of_business, sales_month, sales
,(sales / lag(sales) over (partition by kind_of_business 
                           order by sales_month)
 - 1) * 100 as pct_growth_from_previous
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;

kind_of_business  sales_month  sales  pct_growth_from_previous
----------------  -----------  -----  ------------------------
Book stores       1992-01-01   790    (null)
Book stores       1992-02-01   539    -31.77
Book stores       1992-03-01   535    -0.74
...               ...          ...    ...

Sales dropped 31.8% from January to February, due at least in part to the seasonal
decline after the holidays and the return to school for the spring semester. Sales were
down only 0.7% from February to March.

The calculation for the YoY comparison is similar, but first we need to aggregate sales
to the yearly level. Since we’re looking at only one kind_of_business, I’ll drop that
field from the rest of the examples to simplify the code:

SELECT sales_year, yearly_sales
,lag(yearly_sales) over (order by sales_year) as prev_year_sales
,(yearly_sales / lag(yearly_sales) over (order by sales_year)
 -1) * 100 as pct_growth_from_previous
FROM
(
    SELECT date_part('year',sales_month) as sales_year
    ,sum(sales) as yearly_sales
    FROM retail_sales
    WHERE kind_of_business = 'Book stores'
    GROUP BY 1
) a
;
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sales_year  yearly_sales  prev_year_sales  pct_growth_from_previous
----------  ------------  ---------------  ------------------------
1992.0      8327          (null)           (null)
1993.0      9108          8327             9.37
1994.0      10107         9108             10.96
...         ...           ...              ...

Sales grew more than 9.3% from 1992 to 1993, and almost 11% from 1993 to 1994.
These period-over-period calculations are useful, but they don’t quite allow us to ana‐
lyze the seasonality in the data set. For example, in Figure 3-17 the MoM percent
growth values are plotted, and they contain just as much seasonality as the original
time series.

Figure 3-17. Percent growth from previous month for US retail book store sales

To tackle this, the next section will demonstrate how to use SQL to compare current
values to the values for the same month in the previous year.
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Period-over-Period Comparisons: Same Month Versus Last Year
Comparing data for one time period to data for a similar previous time period can be
a useful way to control for seasonality. The previous time period may be the same day
of the week in the previous week, the same month in the previous year, or another
variation that makes sense for the data set.

To accomplish this comparison, we can use the lag function along with some clever
partitioning: the unit of time with which we want to compare the current value. In
this case, we will compare monthly sales to the sales for the same month in the pre‐
vious year. For example, January sales will be compared to prior year January sales,
February sales will be compared to prior year February sales, and so on.

First, recall that the date_part function returns a numeric value when used with the
“month” argument:

SELECT sales_month
,date_part('month',sales_month)
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;

sales_month  date_part
-----------  ---------
1992-01-01   1.0
1992-02-01   2.0
1992-03-01   3.0
...          ...

Next, we include the date_part in the PARTITION BY clause so that the window
function looks up the value for the matching month number from the prior year.

This is an example of how window function clauses can include calculations in addi‐
tion to database fields, giving them even more versatility. I find it useful to check
intermediate results to build intuition about what the final query will return, so first
we’ll confirm that the lag function with partition by date_part('month',

sales_month) returns the intended values:

SELECT sales_month, sales
,lag(sales_month) over (partition by date_part('month',sales_month) 
                        order by sales_month
                        ) as prev_year_month
,lag(sales) over (partition by date_part('month',sales_month) 
                  order by sales_month
                  ) as prev_year_sales
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;
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sales_month  sales  prev_year_month  prev_year_sales
-----------  -----  ---------------  ---------------
1992-01-01   790    (null)           (null)
1993-01-01   998    1992-01-01       790
1994-01-01   1053   1993-01-01       998
...          ...    ...              ...
1992-02-01   539    (null)           (null)
1993-02-01   568    1992-02-01       539
1994-02-01   635    1993-02-01       568
...          ...     ...             ...

The first lag function returns the same month for the prior year, which we can verify
by looking at the prev_year_month value. The row for the 1993-01-01 sales_month
returns 1992-01-01 for the prev_year_month as intended, and the prev_year_sales
of 790 match the sales we can see in the 1992-01-01 row. Notice that the
prev_year_month and prev_year_sales are null for 1992 since there are no prior
records in the data set.

Now that we’re confident the lag function as written returns the correct values, we
can calculate comparison metrics such as absolute difference and percent change
from previous:

SELECT sales_month, sales
,sales - lag(sales) over (partition by date_part('month',sales_month) 
                          order by sales_month
                          ) as absolute_diff
,(sales / lag(sales) over (partition by date_part('month',sales_month) 
                          order by sales_month)
 - 1) * 100 as pct_diff
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;

sales_month  sales  absolute_diff  pct_diff
-----------  -----  -------------  --------
1992-01-01   790    (null)         (null)
1993-01-01   998    208            26.32
1994-01-01   1053   55             5.51
...          ...    ...            ...

We can now graph the results in Figure 3-18 and more easily see the months
where growth was unusually high, such as January 2002, or unusually low, such as
December 2001.
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Figure 3-18. Book store sales, YoY absolute difference in sales, and YoY percent growth

Another useful analysis tool is to create a graph that lines up the same time period—
in this case, months—with a line for each time series—in this case, years. To do this,
we’ll create a result set that has a row for each month number or name, and a column
for each of the years we want to consider. To get the month, we can use either the
date_part or the to_char function, depending on whether we want numeric or text
values for the months. Then we’ll pivot the data using an aggregate function. 

This example uses the max aggregate, but depending on the analysis, a sum, count, or
other aggregation might be appropriate. We’ll zoom in on 1992 through 1994 for this
example:

SELECT date_part('month',sales_month) as month_number
,to_char(sales_month,'Month') as month_name
,max(case when date_part('year',sales_month) = 1992 then sales end) 
 as sales_1992
,max(case when date_part('year',sales_month) = 1993 then sales end) 
 as sales_1993
,max(case when date_part('year',sales_month) = 1994 then sales end) 
 as sales_1994
FROM retail_sales
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WHERE kind_of_business = 'Book stores'
 and sales_month between '1992-01-01' and '1994-12-01'
GROUP BY 1,2
;

month_number  month_name  sales_1992  sales_1993  sales_1994
------------  ----------  ----------  ----------  ----------
1.0           January     790         998         1053
2.0           February    539         568         635
3.0           March       535         602         634
4.0           April       523         583         610
5.0           May         552         612         684
6.0           June        589         618         724
7.0           July        592         607         678
8.0           August      894         983         1154
9.0           September   861         903         1022
10.0          October     645         669         732
11.0          November    642         692         772
12.0          December    1165        1273        1409

By lining the data up in this way, we can see some trends immediately. December
sales are the highest monthly sales of the year. Sales in 1994 were higher every month
than sales in 1992 and 1993. The August-to-September sales bump is visible, and par‐
ticularly easy to spot in 1994.

With a graph of the data, as in Figure 3-19, the trends are much easier to identify.
Sales increased year to year in every month, though the increases were larger in some
months than others. With this data and graph in hand, we can start to construct a
story about book store sales that might help with inventory planning or scheduling of
marketing promotions or might serve as a piece of evidence in a wider story about
US retail sales.

With SQL there are a number of techniques for cutting through the noise of seasonal‐
ity to compare data in time series. In this section, we’ve seen how to compare current
values to prior comparable periods using lag functions and how to pivot the data
with date_part, to_char, and aggregate functions. Next, I’ll show some techniques
for comparing multiple prior periods in order to further control for noisy time series
data.
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Figure 3-19. Book store sales for 1992–1994, aligned by month

Comparing to Multiple Prior Periods
Comparing data to prior comparable periods is a useful way to reduce the noise that
arises from seasonality. Sometimes comparing to a single prior period is insufficient,
particularly if that prior period was impacted by unusual events. Comparing a Mon‐
day to the previous Monday is difficult if one of them was a holiday. The month in the
prior year might be unusual due to economic events, severe weather, or a site outage
that changed typical behavior. Comparing current values to an aggregate of multiple
prior periods can help smooth out these fluctuations. These techniques also combine
what we’ve learned about using SQL to calculate rolling time periods and comparable
prior period results.

The first technique uses the lag function, as in the last section, but here we’ll take
advantage of the optional offset value. Recall that when no offset is provided to lag,
the function returns the immediate prior value according to the PARTITION BY and
ORDER BY clauses. An offset value of 2 skips over the immediate prior value and
returns the value prior to that, an offset value of 3 returns the value from 3 rows back,
and so on.

For this example, we’ll compare the current month’s sales to the same month’s sales
over three prior years. As usual, first we’ll inspect the returned values to confirm the
SQL is working as expected:
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SELECT sales_month, sales
,lag(sales,1) over (partition by date_part('month',sales_month) 
                    order by sales_month
                    ) as prev_sales_1
,lag(sales,2) over (partition by date_part('month',sales_month) 
                    order by sales_month
                    ) as prev_sales_2
,lag(sales,3) over (partition by date_part('month',sales_month) 
                    order by sales_month
                    ) as prev_sales_3
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;

sales_month  sales  prev_sales_1  prev_sales_2  prev_sales_3
-----------  -----  ------------  ------------  ------------
1992-01-01   790    (null)        (null)        (null)
1993-01-01   998    790           (null)        (null)
1994-01-01   1053   998           790           (null)
1995-01-01   1308   1053          998           790
1996-01-01   1373   1308          1053          998
...          ...    ...           ...           ...

Null is returned where no prior record exists, and we can confirm that the correct
same month, prior year value appears. From here we can calculate whatever compari‐
son metric the analysis calls for—in this case, the percent of the rolling average of
three prior periods:

SELECT sales_month, sales
,sales / ((prev_sales_1 + prev_sales_2 + prev_sales_3) / 3) 
 as pct_of_3_prev
FROM
(
    SELECT sales_month, sales
    ,lag(sales,1) over (partition by date_part('month',sales_month) 
                        order by sales_month
                        ) as prev_sales_1
    ,lag(sales,2) over (partition by date_part('month',sales_month) 
                        order by sales_month
                        ) as prev_sales_2
    ,lag(sales,3) over (partition by date_part('month',sales_month) 
                        order by sales_month
                        ) as prev_sales_3
    FROM retail_sales
    WHERE kind_of_business = 'Book stores'
) a
;

sales_month  sales  pct_of_3_prev
-----------  -----  -------------
1995-01-01   1308   138.12
1996-01-01   1373   122.69
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1997-01-01   1558   125.24
...          ...    ...   
2017-01-01   1386   94.67
2018-01-01   1217   84.98
2019-01-01   1004   74.75
...          ...    ...

We can see from the result that book sales grew from the prior three-year rolling
average in the mid-1990s, but the picture was different in the late 2010s, when sales
were a shrinking percentage of that three-year rolling average each year.

You might have noticed that this problem resembles one we saw earlier when calcu‐
lating rolling time windows. As an alternative to the last example, we can use an avg
window function with a frame clause. To accomplish this, the PARTITION BY will
use the same date_part function, and the ORDER BY is the same. A frame clause is
added to include rows between 3 preceding and 1 preceding.  This includes the
values in the 1, 2, and 3 rows prior but excludes the value in the current row:

SELECT sales_month, sales
,sales / avg(sales) over (partition by date_part('month',sales_month)
                          order by sales_month
                          rows between 3 preceding and 1 preceding
                          ) as pct_of_prev_3
FROM retail_sales
WHERE kind_of_business = 'Book stores'
;

sales_month  sales  pct_of_prev_3
-----------  -----  -------------
1995-01-01   1308   138.12
1996-01-01   1373   122.62
1997-01-01   1558   125.17
...          ...    ... 
2017-01-01   1386   94.62
2018-01-01   1217   84.94
2019-01-01   1004   74.73
...          ...    ...

The results match those of the previous example, confirming that the alternative code
is equivalent.

If you look closely, you’ll notice that the decimal place values are
slightly different in the result using the three lag windows and the
result using the avg window function. This is due to how the data‐
base handles decimal rounding in intermediate calculations. For
many analyses, the difference won’t matter, but pay careful atten‐
tion if you’re working with financial or other highly regulated data.
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Analyzing data with seasonality often involves trying to reduce noise in order to
make clear conclusions about the underlying trends in the data. Comparing data
points against multiple prior time periods can give us an even smoother trend to
compare to and determine what is actually happening in the current time period.
This does require that the data include enough history to make these comparisons,
but when we have a long enough time series, it can be insightful.

Conclusion
Time series analysis is a powerful way to analyze data sets. We’ve seen how to set up
our data for analysis with date and time manipulations. We talked about date dimen‐
sions and saw how to apply them to calculating rolling time windows. We looked at
period-over-period calculations and how to analyze data with seasonality patterns. In
the next chapter, we’ll delve deep into a related topic that extends on time series anal‐
ysis: cohort analysis.
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