
Apache Pulsar
Versus
Apache Kafka
Choosing a Messaging Platform

Chris Bartholomew

REPORT

Compliments of

Unleash the Power
of Streaming Data
SingleStore is the Database Purpose-Built for Real-Time

Accelerate time to insight with a

database built for ultra fast ingest

and high performance queries

Get the familiarity & ease of

integration of a traditional RDBMS

and SQL, but with a groundbreaking,

modern architecture

Build on a cloud-native data

platform designed for today’s

most demanding applications

Get started for free today at SingleStore.com

Chris Bartholomew

Apache Pulsar Versus
Apache Kafka

Choosing a Messaging Platform

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

Apache Pulsar Versus Apache Kafka
by Chris Bartholomew

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Development Editor: Jeff Bleiel
Acquisitions Editor: Jessica Haberman
Production Editor: Katherine Tozer
Copyeditor: Jasmine Kwityn

Proofreader: Christina Edwards
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Jenny Bergman

December 2019: First Edition

Revision History for the First Edition
2019-12-13: First Release
2020-02-12: Second Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Apache Pulsar
Versus Apache Kafka, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and SingleStore. See our
state‐ment of editorial independence.

978-1-492-07954-5

[LSI]

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence
cpascarello
Underline

Table of Contents

Foreword. v

Apache Pulsar Versus Apache Kafka. 1
What Is Apache Pulsar? 1
Architecture 2
Pub–Sub Messaging: An Overview 8
Traditional Messaging 11
Queues and Competing Consumers 11
Pulsar: Pub–Sub and Queue Together 16
Log Abstraction 16
Partitions 19
Performance 21
Tenancy 22
Geo-Replication 25
Ecosystem 29
Summary 31
Acknowledgments 33

iii

Foreword

Technology continues to change the world, and we have now
entered the age of the data-driven enterprise. How businesses col‐
lect, analyze, and act on data is deciding winners and losers in every
category.

What this has meant in recent years is an explosion of new applica‐
tions and analytical systems to deliver real-time decisions—many
times driven by machine learning—and an emerging trend towards
AI and model-driven automation. As a developer, this means you
need instant access to new data, typically delivered by streaming sys‐
tems, and rapid processing of both streaming and historical data—
with little to no tolerance for latency.

With streaming systems as such a critical component of modern
applications and data-driven businesses, it is no surprise that
Apache Kafka has become such a widely used tool. Tens of thou‐
sands of organizations use Kafka to create real-time data pipelines,
speeding data from its point of origin to as many destinations as
needed.

Kafka is a stellar example of the many open source offerings that
help organizations unlock the value of their data. But it is not
without faults. In response, new tools like Apache Pulsar have
arrived more recently to challenge Kafka’s dominance.

In this report, Kafka and Pulsar expert Chris Bartholomew helps
you understand the value of streaming data, learn the relative
strengths of each of these tools, and choose the one that’s better for a
given job.

So why is a database company bringing you this book?

v

We believe that SingleStore is the ideal data platform for
data-intensive applications, operational analytics, machine
learning, and AI. Our ultra-fast ingest and ability to handle a mix
of transactional and analytical workloads at massive concurrency
and scale perfectly matches the requirements of these new systems.
Combining either Kafka or Pulsar with SingleStore gives organizations
a simple, fast, flexible, and modern data platform stack.

This is why we are happy to have worked with O’Reilly to support
this report. We hope it educates and informs, and helps you unlock
the full potential of your data.

— Peter Guagenti, CMO, SingleStore

vi | Foreword

Apache Pulsar Versus
Apache Kafka

Apache Kafka is a widely used publish–subscribe (pub–sub) messag‐
ing system. It originated from LinkedIn and became a top-level
Apache Software Foundation (ASF) project in 2011. In recent years,
Apache Pulsar has emerged as a serious alternative to Kafka and is
being adopted by an increasing number of enterprises in use cases
where Kafka has long ruled. In this report, we go over the key differ‐
ences between Kafka and Pulsar and give some insight into why Pul‐
sar is gaining momentum.

What Is Apache Pulsar?
Like Kafka, Apache Pulsar was developed inside an internet-scale
company to solve its own problems. In 2015, engineers at Yahoo!
needed a pub–sub messaging system that could deliver low-
consistency latency on commodity hardware. It also needed to scale
to millions of topics and provide strong durability guarantees for all
messages that it handled.

The Yahoo! engineers evaluated the solutions that were available at
the time, but couldn’t find one that met all their requirements. So,
they set off to build a new pub–sub messaging system that would be
able to support their global applications such as Mail, Finance,
Sports, and Gemini Ads. Their solution, which became Apache Pul‐
sar, has been running in production in Yahoo! since 2016.

1

Architecture
Let’s begin our comparison of Kafka and Pulsar by looking at the
architecture of the two systems. Since Kafka was well known at the
time, the creators of Pulsar were well aware of its architecture. As
you will see there are some similarities and some differences
between the two. This is because, as you would expect, the Pulsar
creators thought there were parts of the Kafka architecture that
worked well and some parts that could be improved. Since Kafka’s
architecture was the starting point, we will start there as well.

Kafka
Kafka has two major components: ZooKeeper and the Kafka broker,
as shown in Figure 1. ZooKeeper is used for service discovery, lead‐
ership election, and metadata storage for the cluster. In older ver‐
sions, ZooKeeper was also used to store information about
consumer groups, including topic consumption offsets, but that is
no longer the case.

Figure 1. Kafka architecture

The Kafka broker provides the full messaging capabilities of Kafka.
It terminates producer and consumer connections, accepting new
messages from producers and sending messages to consumers. In

2 | Apache Pulsar Versus Apache Kafka

order to provide message guarantees, the Kafka broker also provides
persistent storage for messages on disk. Each Kafka broker is
responsible for a set of topics.

The Kafka broker is stateful. Each broker contains the complete state
for its topics and requires that information to operate properly. If
one broker fails, not just any broker can take over for it. Only
another broker that has a replica of its topics can take over. If the
load is getting too high on one broker, you can’t simply add another
broker to distribute the load. You also need to move the topics—the
state—around to balance the load in the cluster. Kafka provides
tools to help with the rebalancing, but to operate a Kafka cluster,
you must be aware of this relationship between the Kafka broker
and the message state stored on its disk.

The serving of messages—the movement of messages between pro‐
ducers and consumers—is coupled to the storing of messages in the
Kafka broker. If you have a messaging pattern where all messages
are quickly consumed, the need for storing messages may be low,
but the need for serving messages can be high. Alternatively, you
may have a messaging pattern where a large number of messages
need to be stored because they are consumed slowly. In this case, the
need to serve messages may be low, while the need to store them is
high.

Because the serving and stored messages are encapsulated in a single
Kafka broker, you cannot easily scale out these dimensions inde‐
pendently. If you have high serving requirements in your cluster,
you have to scale both serving and storage capacity because the solu‐
tion is to add a Kafka broker. If you have high storage requirements,
but low serving requirements the easiest thing to do is to just add
more Kafka brokers, which scales out both the serving and storage
capacity.

In the storage scaling case, you could add more disks or grow the
disks on the existing brokers, but you will want to be careful not to
create a set of unique Kafka brokers, each having a different storage
configuration and capacity. An environment with “snowflake”
servers is much more complex to manage than one where each
server of a specific type is identically configured.

Architecture | 3

Pulsar
In the Pulsar architecture, there are three main components: Zoo‐
Keeper, Pulsar broker, and BookKeeper bookie, as shown in Fig‐
ure 2. As with Kafka, ZooKeeper provides service discovery,
leadership elections, and metadata storage. Unlike Kafka, Pulsar
separates the message serving function from the message storage
function using Pulsar broker and the BookKeeper bookie
component.

Figure 2. Pulsar architecture

The Pulsar broker is responsible for the serving of messages. The
storing of messages is handled by the BookKeeper bookies. It is a
layered architecture where the Pulsar broker handles serving the
messages between the producers and consumers but hands off
responsibility for storing the messages to the BookKeeper layer.

Because of this layered architecture, the Pulsar broker (unlike
Kafka) is stateless. This means that any broker can take over for any
other failed broker. It also means that a new broker can be brought
online and it can immediately begin serving messages between pro‐

4 | Apache Pulsar Versus Apache Kafka

ducers and consumers. To make sure the load between brokers is
balanced, the Pulsar broker has a built-in load balancer. It continu‐
ally monitors the CPU, memory, and network usage of each broker
and will move responsibility for topics between brokers in order to
maintain a balanced load. When it does this, there is a small increase
in latency, but the end result is a cluster with a balanced load.

The BookKeeper layer is the data storage layer and is, of course,
stateful. A messaging system that provides message delivery guaran‐
tees must retain messages for consumers, so messages must be per‐
sistently stored somewhere. BookKeeper was designed to enable the
building of a distributed log across multiple servers. It is an inde‐
pendent Apache project and is used in a variety of applications, not
just Pulsar.

Because BookKeeper breaks the log into segments called ledgers, it is
easy to maintain an even balance between the BookKeeper bookie
nodes. If a bookie node fails, some of the topics will become under
replicated. In this case, BookKeeper will automatically start copying
ledgers from replicas stored on other bookies to restore the replica‐
tion factor. It does not have to wait for the failed bookie to be
restored or another bookie to come online. If you add a new bookie,
it will immediately start storing new ledgers from existing topics.
There is no need to move topics or partitions to the new server
because no one bookie owns the topic or partition.

Replication Model
For durability of messages, both Kafka and Pulsar store multiple
copies, or replicas, of each message. However, they differ in the rep‐
lication model they use.

Kafka has a leader–follower replication model. One of the Kafka
brokers is elected the leader for a topic (technically a topic partition
—more on that later). All messages are initially written to the leader,
and the followers read and replicate the messages from the leader, as
shown in Figure 3. Unless there is a failure of one of the Kafka brok‐
ers, this relationship is static. A message is written to the same set of
leader and follower brokers. Introducing a new broker doesn’t
change the relationship for existing topics.

Architecture | 5

Figure 3. Kafka leader–follower replication

Pulsar uses a quorum–vote replication model. Multiple copies of the
message (write quorum) are written in parallel. Once some number
of copies have been confirmed stored, then the message is acknowl‐
edged (ack quorum). Unlike the leader–follower model, Pulsar can
spread (or stripe) the copies over a set of storage nodes (ensemble),
which can improve the read and write performance. This also means
that as soon as a new node is added it will become part of the set
available for spreading the messages across.

In Figure 4, the message is sent to the broker. It is then broken into
segments and sent to multiple bookie nodes. All the bookie nodes
store the segments and acknowledge back to the broker. Once the
broker has received enough acknowledgements for the segments
from enough bookies, it will acknowledge the message back to the
producer.

6 | Apache Pulsar Versus Apache Kafka

Figure 4. Pulsar quorum–vote replication

Because brokers are stateless, the storage layer is distributed, and the
quorum–vote replication model is used, dealing with failed servers
is easier in Pulsar than in Kafka. You just replace the failed server,
and Pulsar recovers automatically. Adding new capacity to the clus‐
ter is also easier. It is just a matter of simple horizontal scaling.

And because the serving and storage layers are separated, you can
scale them independently. If the serving requirements are high and
storage requirements are low, you can just add more Pulsar brokers
to the cluster. If the storage requirements are high but the serving
requirements are low, you can just add more BookKeeper bookies.
This independent scalability means you can better optimize your
cluster resources, avoiding paying for extra storage when you just
need extra serving power and vice versa.

Architecture | 7

Pub–Sub Messaging: An Overview
The fundamental messaging pattern supported by both Kafka and
Pulsar is pub–sub, or publish–subscribe. In pub–sub messaging, the
senders and receivers of messages are decoupled, so that they have
no knowledge of each other. The sender (or producer) publishes a
message to a topic without knowledge of who will receive the mes‐
sage. The receiver (or consumer) subscribes to a topic that it wants
to receive messages for. The sender and receiver are not connected
and can change over time.

Figure 5. Pub–sub messaging pattern—each subscriber gets a copy of
the messages sent by the producer

A key feature of the pub–sub message pattern is that there can be
multiple publishers and subscribers on a single topic. As shown in
Figure 5, many publishing applications can be sending messages to a
single topic, and many different subscribing applications can be
receiving those messages. Importantly, each subscribing application
receives its own copy of the message. So, if a single message is pub‐
lished and there are 10 subscribers, 10 copies of that message are
sent, one for each subscriber.

The pub–sub messaging pattern is not new and can be achieved
using a wide variety of message brokers: RabbitMQ, ActiveMQ, IBM
MQ—the list is long. What differentiates Kafka from these tradi‐
tional message brokers is its ability to scale to support high volumes
of messages in the pub–sub pattern while maintaining consistent
per-message latency.

8 | Apache Pulsar Versus Apache Kafka

Like Kafka, Pulsar supports the pub–sub messaging pattern and can
support high volumes of messages with consistent latency. Kafka
uses consumer groups to enable multiple consumers to receive a
copy of a single message. For each consumer group associated with a
topic, Kafka delivers one message to the group. Pulsar achieves the
same behavior using a subscription. For each subscription associ‐
ated with a topic, Pulsar delivers one message to the subscription.

Log Abstraction
The other main difference between Kafka and traditional message
brokers is its use of the log as its primary abstraction for dealing
with messages. Producers write to a topic, which is a log, and con‐
sumers independently read from the log. However, unlike tradi‐
tional message brokers, messages once read are not removed from
the log. They are persistent in the log for a configurable amount of
time. Instead of consumers acknowledging a message to the broker,
which then deletes it, a Kafka consumer indicates how much of the
log it has read by committing an offset value. This action does not
delete the message from the log or modify it in any way. The log is
immutable.

To prevent the log from becoming infinitely long, messages in the
log expire (typically) after a period of time (retention period).
Expired messages are removed from the log. In Kafka, the default
retention period is seven days. Figure 6 illustrates how published
messages are appended to the log, while consumers read at different
offsets. In time, messages in the log expire and are removed.

Pub–Sub Messaging: An Overview | 9

Figure 6. The log abstraction

Message Replay
This use of a log abstraction allows for multiple consumers to read
from a topic independently. It also enables message reply. Since a
consumer is just reading from the log and committing its place (off‐
set) in the log, it is easy to have a consumer go back in time to mes‐
sages it has already read by moving its offset to an earlier position.
Being able to replay messages has many advantages. For example, it
allows an application with bugs to be repaired and then will replay
previously consumed messages to correct its state. It is also useful to
replay messages when testing applications or developing new
applications.

Like Kafka, Pulsar uses a log abstraction for its topics, but with a dif‐
ferent implementation (more on that later). This means that it also
supports message replay like Kafka does. With Pulsar, each subscrip‐
tion you create has a cursor that tracks where the subscription is in
the topic log. You can create a subscription with the cursor starting
at the earliest or latest message in a topic. You can rewind the sub‐
scription cursor to a specific message or back a certain amount of
time (for example, 24 hours).

10 | Apache Pulsar Versus Apache Kafka

Traditional Messaging
So far, Kafka and Pulsar have many similarities. They both are pub–
sub messaging systems that can handle high messaging volumes.
They use a log abstraction for topics and support the replay of mes‐
sages. Where they differ is in their support of the traditional mes‐
saging model.

In the traditional messaging model, the messaging system takes
responsibility for ensuring a message is delivered to the consumer. It
does this by keeping track of whether or not the consumer has
acknowledged a message and will periodically redeliver that message
to the consumer until it has been acknowledged. Once the message
has been acknowledged, it is deleted (or marked for future deletion).
An unacknowledged message is never deleted. It will persist forever.
An acknowledged message is never sent to a consumer.

Pulsar fully supports this model using subscriptions. Because of this
capability, Pulsar is able to support additional messaging patterns
that focus on how the message is consumed.

Queues and Competing Consumers
The first pattern we are going to look at is the traditional queue.
This model is most interesting when the messages on the queue rep‐
resent some work to be done (work queue). You can have a single
consumer read the messages off the queue and do that work, but it
often makes sense to distribute the work among multiple consum‐
ers. This is called the competing consumers pattern and is shown in
Figure 7.

In the competing consumers pattern, queues are used to store mes‐
sages that take a long time to process—for example, transcoding a
video. A message is published into a queue and a consumer reads
that message and processes it. Once the message is processed, the
consumer sends an acknowledgment and the message is removed
from the queue. With a single consumer, all the messages in the
queue that need to be worked on are blocked until the message is
processed and acknowledged.

Traditional Messaging | 11

Figure 7. Competing consumers—each message is processed once by
one of the consumers

To improve the flow and keep the queue from getting backed up,
you add multiple consumers to the queue. Now, multiple consumers
“compete” to take messages from the queue and process them. With
two consumers in our video transcoding example, the system can
process twice as many videos in the same amount of time. If that is
not fast enough, we can add more consumers to increase the
throughput.

To be most effective, a work queue should always distribute mes‐
sages to consumers that are able to perform work on the messages in
the queue. If a consumer is available to process a message, the queue
should send it that message.

Kafka
Kafka implements the competing consumers pattern using con‐
sumer groups and multiple partitions. In Kafka, topics consist of
one or more partitions. When messages are published they are dis‐
tributed to the partitions of the topic in a round-robin manner or by
a key in the message. Consumer groups read from the partitions of a
topic.

Importantly, in Kafka a partition can only be consumed by one con‐
sumer at a time. To get competing consumers to work, there needs
to be a partition for each consumer. If there are more consumers
than partitions, the extra consumers will be idle. For example, if you
have a topic with two partitions, you can have up to two active con‐
sumers in the consumer group. If you add a third consumer to the

12 | Apache Pulsar Versus Apache Kafka

group, it won’t have a partition to read from, so it won’t be compet‐
ing for the work (messages) on the queue.

This means you need to have an idea how many competing consum‐
ers you will need when you create the topic. You can increase the
number of partitions on a topic, but this is a fairly significant
change, especially if you are assigning partitions based on keys. In
addition to the relationship between consumers and partitions in
Kafka, adding a new consumer to a consumer group causes a reba‐
lance of all the consumers on the topic. This rebalancing causes a
pause in message delivery for all consumers.

So Kafka does support the competing consumers messaging pattern,
but you need to manage the number of partitions on a topic care‐
fully to make sure that when adding a new consumer that consumer
will actually process messages. Also, unlike a traditional message
broker, Kafka does not periodically redeliver messages so that they
can be processed again. If you want a message retry mechanism, you
have to implement it in your application.

Kafka does have an advantage over traditional brokers in this area.
One of the downsides to the competing consumers pattern is that
messages can be processed out of order. Because you have multiple
consumers competing to consume messages that may be working at
different rates, it is very likely that messages will be processed out of
order. If the message represents a unit of independent work, this is
not an issue. But if the message represents an event like a financial
transaction, order matters.

Because of its use of partitions and the rule that only one consumer
can consume from a partition at a time, Kafka is able to guarantee
in-order delivery of messages that have the same key with compet‐
ing consumers. If messages are routed to partitions by key, then the
messages in each partition are in publishing order for that key. A
consumer can consume off that partition getting the messages in
order. This allows you to scale out consumers for parallel processing
—with some careful planning—and maintain message order.

Pulsar
In Pulsar, the competing consumers pattern is easy to implement.
You just create a shared subscription on a topic. Consumers then
connect to the topic using this shared subscription. Messages are
consumed in a round-robin fashion by however many consumers

Queues and Competing Consumers | 13

are connected to that subscription. Consumers coming and going
doesn’t trigger rebalancing like it does in Kafka. When a new con‐
sumer connects it starts participating in the round-robin receipt of
messages. This is because unlike Kafka, Pulsar doesn’t use partitions
to distribute messages between consumers. This is all controlled by
the Pulsar subscription. Pulsar does support partitions, which are
discussed later, but message consumption is primarily controlled by
a subscription, not a partition.

A Pulsar subscription will periodically redeliver unacknowledged
messages to consumers. Not only that, it supports advanced
acknowledgment semantics, such as single-message (selective)
acknowledgement and negative acknowledgment, which are useful
for work queues. Single-message acknowledgement allows messages
to be acknowledged out of order, so that one slow consumer doesn’t
end up blocking the delivery of messages to other consumers, which
can happen when messages are acknowledged by cumulative range.
Negative acknowledgement allows a consumer to put a message
back on the topic to be handled by another consumer or processed
later.

Pulsar supports routing messages to partitions by key, so it is also
possible to implement competing consumers just like in Kafka. A
shared subscription is simpler, but if you need to guarantee message
order by key while scaling out consumers for parallel processing you
can do that in Pulsar too.

Pulsar Subscription Models
The shared subscription is an easy way to implement a work queue
in Pulsar. Pulsar also supports additional subscription models that
enable other message consumption patterns: exclusive, failover,
shared, and key_shared, which are shown in Figure 8.

With an exclusive subscription, no more than one consumer is
allowed to consume messages from the topic. If any other consumer
attempts to consume a message, it is rejected. This is useful if you
need to guarantee that messages are processed in order by a single
consumer.

With a failover subscription, multiple consumers are allowed to
connect to a topic, but at any given time only one is allowed to con‐
sume from the topic. This establishes an active–standby relationship
where one consumer is active for the subscription and any other

14 | Apache Pulsar Versus Apache Kafka

consumers are on standby waiting to take over if the active con‐
sumer fails. When the active consumer disconnects or fails, all unac‐
knowledged messages are redelivered to one of the standby
consumers.

Figure 8. Pulsar subscription models: exclusive, failover, shared, and
key_shared

As was already mentioned, one of the weaknesses of the competing
consumers pattern as it is implemented in a shared subscription
model is that messages can be processed out of order. In both Kafka
and Pulsar, you can get around this by routing messages to parti‐
tions by key. Pulsar has recently introduced a new subscription
model called key_shared that makes this even easier. This subscrip‐
tion model has the advantages of in-order delivery of messages by
key without having to deal with partitions. Messages can be pub‐
lished to a single topic and distributed to multiple consumers like
with a shared subscription. However, individual consumers only
receive messages for a single key. With this type of subscription, it is
possible to get in-order delivery of messages by key without having
to partition the topic.

Queues and Competing Consumers | 15

Pulsar: Pub–Sub and Queue Together
As we have seen, both Kafka and Pulsar are able to support pub–sub
messaging. They both use a log abstraction for their topics, so they
are able to replay messages that have already been processed by con‐
sumers. But Kafka only has limited support for different ways a
message can be consumed. It does not do automatic message rede‐
livery and cannot guarantee that an unacknowledged message will
not be lost. In fact, all messages outside the retention period are
deleted, whether or not they have been consumed. Work queues
with competing consumers can be implemented in Kafka, but with
several caveats and considerations.

Because of these limitations, organizations needing high-
performance pub–sub messaging, delivery guarantees, and tradi‐
tional messaging patterns often implement a traditional message
broker like RabbitMQ alongside Kafka. They use Kafka for their
high-performance pub–sub use cases and RabbitMQ for use cases
that require delivery guarantees, such as work queues.

Pulsar can support high-performance pub–sub and traditional mes‐
saging patterns with delivery guarantees in a single messaging sys‐
tem. It is not difficult to implement a work queue using Pulsar—in
fact, this was one of the original use cases that Pulsar was designed
to handle. In organizations that have deployed parallel messaging
systems, Kafka to handle high volume pub–sub and RabbitMQ to
handle work queues, Pulsar can be used to consolidate down to one
messaging system. Or even if only one type of messaging is initially
required, Pulsar can be deployed to future proof against the emer‐
gence of new use cases.

Operating one messaging system instead of two is, obviously, a lot
easier, requiring fewer resources, both IT and human.

Log Abstraction
Now that we have looked at the high-level architecture of Kafka and
Pulsar and covered the messaging patterns that can be implemented
in both systems, let’s go into more detail about the building blocks of
these systems. First, we’ll discuss the log abstraction.

The Kafka team deserves credit for the insight that a log is a great
abstraction for a real-time data exchange system. Because logs are

16 | Apache Pulsar Versus Apache Kafka

append-only, data can be written to them quickly, and because the
data in a log is sequential, it can be extracted quickly in the order
that it was written. Sequential reading and writing is fast, random is
not. Persistent storage interactions are a bottleneck in any system
that offers data guarantees, and the log abstraction makes this about
as efficient as possible. Both Kafka and Pulsar use the log as their
fundamental building block.

For the sake of simplicity, let’s assume a single-partition Kafka topic
in the following sections, so that topic and partition are
synonymous.

Kafka Log
In Kafka, each topic is a log. Logs are stored on the Kafka broker as
a single unit. A log, though implemented as a series of files, cannot
be split between multiple brokers or between multiple disks on the
same broker. This log as-a-single-unit generally works well, but it
can cause complications at scale and during maintenance activities.

For example, the maximum size of any log is limited by the disk that
it is on. So, the disk on the broker that stores the log constrains the
size of the topic. Adding another disk to the broker won’t help, since
logs are a single unit and can’t be split across disks. The only option
is to increase the size of the disk. In cloud environments this is pos‐
sible, but if you are running on physical hardware, increasing the
size of an existing disk is not an easy undertaking.

Another complication of having this one-to-one relationship
between the log and its backing files comes when trying to perform
maintenance operations on a live system. If a broker server fails or
you need to add a new broker to accommodate higher load, you end
up copying sometimes large sets of log files between servers. Doing
these large file copies while trying to keep up with real-time data can
create a lot of strain on a Kafka cluster.

Pulsar Distributed Log
Like Kafka, Apache Pulsar uses a log abstraction as the basis of its
real-time messaging system. Every topic is a log in Pulsar as well.
However, it takes a different approach to writing the log to storage.
Instead of writing the log as a single unit on a single server, Pulsar
breaks up the log into segments or ledgers. It then distributes those

Log Abstraction | 17

ledgers across multiple servers. In this way, it creates a distributed
log that resides on multiple servers.

A distributed log has several advantages. The maximum size of the
log is no longer limited by the disk capacity of a single server. Since
the segments are distributed across multiple servers, the log can
grow to be as big as the total storage capacity of all the servers.
Increasing the capacity of the distributed log is as simple as adding a
new server to the cluster. Once the new server comes online, the dis‐
tributed log can start using the extra capacity to write new log seg‐
ments. There is no need to resize disks or rebalance partitions to
distribute the load. And if a server fails, recovering from that failure
is easier. Lost segments can be recovered from multiple different
servers, improving recovery time.

As you can imagine, getting a distributed log to work reliably is dif‐
ficult. That is why Pulsar uses another Apache project, BookKeeper,
to implement its distributed log. As part of running Pulsar, you need
to run an Apache BookKeeper cluster. Although this introduces
operational complexity, it provides the building blocks for the dis‐
tributed log using a proven and widely adopted technology that is
optimized for this use case. BookKeeper is designed for robust, low-
latency writes and reads. The architecture of BookKeeper separates
writing and reading onto separate disks so that, for example, slow
consumers won’t impact the ability of producers to publish new
messages.

BookKeeper also allows Pulsar to provide high durability guaran‐
tees. When a message is stored in BookKeeper, it is flushed to disk
before it is acknowledged back to the producer. If the server running
BookKeeper fails, all acknowledged messages are guaranteed to have
been stored permanently on disk. BookKeeper is able to provide this
high durability guarantee while maintaining low latency.

Contrast this to Kafka, which flushes messages to disk periodically
by default. This means that a failure of a Kafka broker will almost
always cause messages to be lost because they haven’t been flushed to
disk. Of course, if you are running with in-service replicas, these lost
messages can be recovered, but under a similar failure of a Book‐
Keeper server, no recovery would be necessary since no messages
would be lost. Kafka can be configured to flush each message to
disk, but this comes with a performance penalty.

18 | Apache Pulsar Versus Apache Kafka

Tiered Storage
Another advantage of separating the serving and storing in Pulsar is
that it allows for the introduction of a third layer to the architecture:
long-term (or cold) storage. Pulsar and BookKeeper are optimized
for fast access to the messages stored in its topics. However, if you
have a large set of messages but don’t need fast access to those mes‐
sages, or you only need fast access to the latest messages, Pulsar lets
you push those messages to cloud object storage such as AWS S3 or
Google Cloud Storage. It does this by offloading older segments of a
topic to the cloud provider and then removing them from the
bookie local storage.

Cloud object storage is significantly cheaper than the high-speed
SSD drives that you would typically use to build a high-performing
messaging cluster, so operational costs can be reduced. Since cloud
storage provides practically infinite storage capacity, you don’t have
to worry about exceeding the storage capacity of your cluster. You
could have one very large topic that mostly resides in cloud storage,
while all the other smaller topics are served by the high-speed disks
attached to the bookie nodes.

Moving to this three-layer architecture can fit nicely with use cases
that require permanent storage of messages, such as event sourcing.
With event sourcing all changes in state are recorded as events,
which can be saved as messages in Pulsar. The current state of an
application is determined by the entire history of events until the
current time. To ensure that you can always reconstruct the current
state, you must save the entire event history. Given Pulsar’s durabil‐
ity guarantees, practically infinite storage capacity when using tiered
storage, and ability to replay all messages in a topic, it can be a good
fit for event sourcing application architectures.

Partitions
If you have used Kafka at all you are familiar with partitions. We
have already touched on them several times in this report because it
is unavoidable. Partitions are a fundamental concept in Kafka, and
can be very useful. Pulsar also supports partitions, but they are
optional.

Partitions | 19

Kafka Partitions
In Kafka, all topics are partitioned. A topic may have only one parti‐
tion, but it has to have at least one partition. Partitions are impor‐
tant because they are the fundamental unit of parallelism in Kafka.
By spreading the work across partitions and therefore multiple
brokers, the rate that can be processed by a single topic goes up.
When Kafka was created, partitioning was needed to meet the high-
throughput use cases Kafka was designed to tackle, especially since
the goal was to be able to use commodity hardware.

In the years since Kafka’s inception, the capacity of commodity
hardware has improved. Plus, there have been performance
improvements in the Java virtual machine that Kafka runs on. These
hardware and software improvements mean that today you can get
good performance with a single partition using commodity hard‐
ware. From a performance perspective, a topic with a single parti‐
tion is good enough for many use cases.

However, as we’ve already discussed, if you ever want to have multi‐
ple consumers read from your topic in Kafka, you can’t use a single
partition. That’s because partitions are the unit of parallelism for
production and consumption in Kafka. So even if a single partition
is good enough for the incoming messaging rate to a topic, you will
probably want to use multiple partitions so that you have the option
of adding multiple consumers in the future. Yes, you can add parti‐
tions to a topic later, but if you are using key-based partitioning, this
may change which keys are assigned to which partitions, which can
affect the in-order processing of messages in a partition. Partitions
consume resources (for example, file handles on the broker, mem‐
ory on the client) so they are not lightweight. And although you can
increase the number of partitions on a topic, you can never decrease
the number of partitions on a topic.

Since partitions are fundamental to Kafka, to properly use Kafka
you need to understand how they work. You need to consider the
number of partitions you need (or might need in the future) when
creating a topic. When connecting consumers, you need to under‐
stand how they interact with partitions in their consumer groups.
And if you operate a Kafka cluster, everything works at the partition
level, so you need to be partition-centric when doing maintenance
and repairs.

20 | Apache Pulsar Versus Apache Kafka

Pulsar Partitions
Pulsar also supports partitions, but they are completely optional. In
fact, it is possible to run Pulsar without using partitions at all. You
can create topics that you can publish a high volume of messages
into and have multiple consumers consuming them from without
using partitions. If you need additional performance or need key-
based, in-order message consumption, you can create partitioned
topics in Pulsar. They are fully supported, providing most of the
same capabilities as Kafka.

In Pulsar, partitions are implemented as a collection of topics with a
suffix to indicate the partition number. For example, if you create a
topic “mytopic” with three partitions, three topics will be automati‐
cally created with the names “mytopic-partition-1,” “mytopic-
partition-2,” and “mytopic-partition-3.” Producers can connect to
the main topic, “mytopic,” and the messages will be sent to the parti‐
tion topics based on the routing mode defined by the publisher. It is
also possible to publish directly to a partition topic. Similarly, a con‐
sumer can connect to the main topic or one of the partition topics.
Like Kafka, you can increase the number of partitions for a topic,
but you can never decrease the number of partitions.

Since partitions are optional in Pulsar, working with Pulsar is sim‐
pler, especially when you are first learning it. You can safely ignore
partitions in Pulsar, unless you have use cases that demand the fea‐
tures provided by partitions. Not only does this simplify the opera‐
tion of a Pulsar cluster, it makes dealing with Pulsar client APIs
easier. Partitions are a useful concept, but if you can get by without
dealing with them, it helps to simplify an inherently complex
technology.

Performance
Kafka is known for its performance. It made its mark by being able
to support high volumes of messages in real-time environments.
Comparing performance between messaging systems can be tricky.
All systems have performance sweet spots and performance blind
spots. To make a fair comparison between them is difficult.

One project that aims to make performance comparisons between
messaging systems fair is the OpenMessaging Project, a Linux Foun‐
dation Collaborative Project. The OpenMessaging Project, which is

Performance | 21

http://openmessaging.cloud

supported by multiple providers of messaging systems, has a goal of
providing vendor-neutral and language-independent standards for
messaging and streaming technologies. The project includes a per‐
formance testing framework that supports various messaging tech‐
nologies, including Kafka and Pulsar.

The idea is that by using a standard test framework and methodol‐
ogy, a certain degree of fairness can be introduced into the evalua‐
tion. All the code for the OpenMessaging Project is open source and
anyone is welcome to run the benchmark tests and produce their
own results.

Going through a detailed performance analysis between Kafka and
Pulsar is outside the scope of this report. However, there are pub‐
lished results using the OpenMessage Project benchmark frame‐
work that indicate Pulsar outperforms Kafka.

A report published by GigaOm provides these headline results:

• Up to 150% higher maximum throughput with Pulsar
• Up to 40% lower message latency and greater consistency in

latency with Pulsar
• Better scalability that delivers consistent results across a range

of message sizes and partition counts

To validate some of these results, I have done a detailed comparison
of the latency between Kafka and Pulsar using the OpenMessage
Project benchmark framework. In that comparison, I came to the
conclusion that Pulsar provides more predictable latency over time.
In many cases, Pulsar provides lower latency than Kafka, especially
if you need strong durability guarantees or a large number of
partitions.

Tenancy
Tenancy is the number of users or groups of users that can use the
system independently. In a single tenant system, all the resources of
the system are shared, so users of the system have to be aware of
what other users of the system are doing. Since the resources are
shared, this introduces contention and possible collisions. When
using a single-tenant system with multiple user groups, you typically
need to use multiple copies of the system, one for each group, to
provide isolation and privacy.

22 | Apache Pulsar Versus Apache Kafka

https://oreil.ly/vGoPy
https://oreil.ly/34h_v

In a multitenant system, different user groups, or tenants, can use
the system independently. Each tenant is separate from the other
tenants of the system. Resources are divided between tenants so
each tenant has their own private instance of the system. There is
one system, but each tenant gets their own virtual, isolated environ‐
ment. A multitenant system can support multiple user groups.

Since a messaging system is core infrastructure, it will eventually be
used by different teams for different projects. Having to create a new
cluster for each team or project is operationally complex and doesn’t
make efficient use of resources. Because of this, multitenancy in a
messaging system is a desirable feature.

Pulsar
Multitenancy was a key design requirement of Pulsar. Because of
that, Pulsar has several multitenancy features that allows it to sup‐
port multiple teams or multiple projects within a single Pulsar
system.

In Pulsar, a tenant has its own virtual messaging environment sepa‐
rate from the other tenants. Topics created by one tenant are sepa‐
rate from topics created by another tenant. Typically, a tenant will be
used by all members of a team or department. Each tenant can have
multiple namespaces. A namespace is a grouping of topics. The
same topic name can exist in multiple namespaces. A namespace is a
convenient way to group all the topics involved in specific project.

Namespaces are also a mechanism for sharing policy configuration
between topics. For example, all the topics that need a retention
time of 14 days can be grouped into a namespace. By setting this
policy on the namespace, all topics in that namespace inherit that
policy.

When there are multiple tenants sharing a resource, it is important
to have mechanisms to ensure that all tenants get fair access. You
want to ensure that one tenant doesn’t consume all resources, starv‐
ing out the other tenants.

Pulsar has a number of policies that can be used to ensure that a sin‐
gle tenant doesn’t consume all the resources of the cluster. There are
policies that limit outbound message rate, unacknowledged message
storage, and message retention periods. These policies can all be set

Tenancy | 23

at the namespace level, so that groups of topics can have different
policies.

In order for multitenancy to work, Pulsar supports authorization at
the namespace level. This means you can limit access to topics in a
namespace. You can control who is allowed to create topics in a
namespace and who is allowed to produce and consume from those
topics.

Kafka
Kafka is a single-tenant system. There is a global namespace for all
topics. Policies such as retention time can be set as a global default,
or overridden on individual topics. There is no ability to group
related topics together or apply policy on an arbitrary group of
topics.

For authorization, Kafka supports access control lists (ACLs), which
allow you to restrict who can produce and consume from a topic.
ACLs allows fine-grain control over authorization in the cluster. You
can set policies on various resources such as the cluster, topics, and
consumer groups. You can also specify various specific operations
such as create, describe, alter, and delete. In addition to authoriza‐
tion based on user (principal), you can also define host-based
authorization. For example, you can allow User:Bob to write to and
read from a topic but only from IP address 198.51.100.0. This
detailed level of authorization and host-based restrictions is not
available in Pulsar, which only supports a handful of operations
(administer, produce, consume) and does not offer host-based
authorization.

Although Kafka has more flexibility with its authorization controls,
it is still fundamentally a single-tenant system. If multiple groups are
using the same Kafka cluster, they need to ensure that their topic
names don’t collide and that ACLs are applied correctly. With Pul‐
sar, multitenancy is built in, so sharing a cluster between different
teams and project groups is straightforward.

24 | Apache Pulsar Versus Apache Kafka

Geo-Replication
For systems like Kafka and Pulsar to achieve high performance, it’s
important for their components to be located close together so they
can achieve low-latency communication between them. This means
that Kafka and Pulsar are deployed in a single data center with high-
speed networking between the components. Replication of messages
within a cluster protects you from message loss and downtime when
one (or possibly more) components (compute, storage, network) of
the cluster fails. In cloud environments, the components can be dis‐
tributed between availability zones within a data center (region) to
protect against the failures of a zone.

If the entire data center fails or becomes isolated then there will be
an outage (or loss, in the event of a disaster) of the messaging sys‐
tem. If this is not acceptable for your use case, then you can use geo-
replication. With geo-replication, messages are replicated to another
cluster at a remote location. For every message published in one
data center, that message is automatically—and reliably—copied to
another data center. This protects against the failure of an entire
data center.

Geo-replication is also useful for global applications that have mes‐
sages produced in one part of the world being consumed by con‐
sumers in other parts of the world. By replicating messages to
remote data centers, load can be distributed and responsiveness for
clients can be improved.

Pulsar
When the team at Yahoo! set out to build what would eventually
become Apache Pulsar, the ability to replicate messages between
geographically distant data centers was a key requirement. They
needed to make sure that messages would still be available even if an
entire data center failed. So with Pulsar, geo-replication is a core fea‐
ture, fully integrated into the administration interfaces. Geo-
replication can be enabled and disabled at the namespace level. The
administrator can easily configure which topics will be replicated
and which will not be replicated. Individual producers can even
exclude certain data centers from receiving a copy of the messages
that it publishes.

Geo-Replication | 25

Figure 9. Active–standby replication

Geo-replication in Pulsar supports multiple topologies, such as
active-standby, active–active, full mesh, and edge aggregation. Fig‐
ure 9 illustrates active–standby replication. All messages published
to the active data center (Data Center 1) are replicated to the
standby data center (Data Center 2). If the active data center fails,
clients can connect to the standby data center. For active–standby
replication, Pulsar has recently introduced replicated subscriptions.
This feature keeps the subscription state synchronized between the
active and standby clusters so that applications can switch to the
backup data center and pick up where they left off.

In active–standby replication, clients are only connected to one data
center at a time. In active–active replication, which is shown in Fig‐
ure 10 in a full-mesh configuration, clients connect to multiple data
centers. The messages published in one data center are replicated to
multiple data centers.

Figure 11 shows an edge-aggregation topology. In this topology, cli‐
ents connect to multiple data centers that replicate the messages to a
central data center for processing. If the edge data centers are loca‐
ted near the clients, then this allows for quick message acknowledg‐
ment of published messages even if the central data center is
geographically distant.

26 | Apache Pulsar Versus Apache Kafka

Figure 10. Active–active, full-mesh replication

Figure 11. Edge aggregation

It is also possible to do synchronous geo-replication with Pulsar. In
a typical geo-replication setup, the message replication is done asyn‐
chronously. A producer sends a message to its primary data center.
The message is persisted and acknowledged back to the producer. It
is then reliably copied to the remote data center. The overall process
is asynchronous because the message is acknowledged to the

Geo-Replication | 27

producer before it is replicated to the remote data center. This works
fine as long as the remote data center is operational and reachable
through the network. However, if there is a problem with the remote
data center or the network connection is slow, the acknowledged
message may be waiting to be copied to the remote data center. If
the primary data center fails before the message can be copied to the
remote data center, then the message can be lost.

If this type of loss is not acceptable for your use case, you can con‐
figure Pulsar to do synchronous replication. With synchronous rep‐
lication the message is not acknowledged back to the production
until it is safely stored in multiple data centers. Since the messages
need to be sent to multiple data centers that are geographically dis‐
tant, this setup will take longer to acknowledge published messages
because of the network latency between the data centers. However,
this ensures that messages will not be lost even in the event of the
complete failure of a data center.

Pulsar has a rich set of geo-replication functionality that supports
almost any configuration you can think of. The configuration and
management of geo-replication is fully integrated into Pulsar and
does not require external packages or extensions.

Kafka
There are multiple ways to do geo-replication in Kafka, or mirror‐
ing, as it is called in the Kafka documentation. Kafka includes a tool
called MirrorMaker that replicates messages from one cluster to
another cluster as they are produced. It is a simple tool that connects
a Kafka consumer in one data center to a Kafka producer in another.
It cannot be dynamically configured (you need to stop and start the
tool to change its configuration) and it does not provide any config‐
uration or subscription synchronization between the local and
remote cluster.

Another geo-replication option is uReplicator, which was developed
by Uber and then open sourced. Uber created uReplicator to address
many of the shortcomings of MirrorMaker, improving its perfor‐
mance, scalability, and operations. Certainly, uReplicator is a better
geo-replication solution for Kafka. However, it is an independent
distributed system with controller and worker nodes that needs to
be operated in parallel with the Kafka cluster.

28 | Apache Pulsar Versus Apache Kafka

There are also commercial solutions for geo-replication in Kafka,
such as Confluent Replicator. The Confluent Replicator supports
active–active replication, synchronizes configuration between clus‐
ters, and is easier to operate than MirrorMaker. It depends on Kafka
Connect, which is a distributed system that needs to be operated in
parallel with the Kafka cluster.

Geo-replication is possible in Kafka, but it’s not simple. From having
to choose among multiple solutions to having to run parallel tools
or entire distributed systems to support it, geo-replication is com‐
plex, especially when compared to Pulsar’s built-in geo-replication
capabilities.

Ecosystem
We have spent a lot of time looking at the core Kafka and Pulsar
technology. Now let’s zoom out and take a look at the bigger picture
of the ecosystem that surrounds each project.

Community and Related Projects
Kafka was open sourced in 2011 while Pulsar was open sourced in
2016. So Kafka had a five-year headstart on creating a community
and having others build around it. Kafka is widely deployed and
many have built open source and commercial offerings. There are
several commercial Kafka distributions available and many cloud
providers offer managed Kafka services.

Not only are there many options for running Kafka, there are many
open source projects that provide clients, tools, integrations, and
connectors for Kafka. Since Kafka is run by large, internet-scale
companies, many of these projects have originated from companies
like Salesforce, LinkedIn, Uber, and Shopify. And, of course, there
are many commercial complementary pieces available for Kafka.

Kafka knowledge is also widely distributed, so answers to questions
you have about Kafka are easy to find. There are many blog posts,
online courses, over 15,000 Stack Overflow questions, more than
500 contributors on GitHub, and plenty of people with extensive
experience using Kafka.

Clearly, Pulsar cannot hope to have matched the size of the Kafka
ecosystem and community in the relatively short time it has been an
open source project. However, it did quickly progress from an

Ecosystem | 29

incubator project in Apache to a top-level project and has shown
steady increase in many of its community metrics, such as GitHub
contributors and members of its Slack workspace. And although it is
relatively small, the Pulsar community is welcoming and active.

Despite all that, Kafka has a clear advantage in this category.

Open Source
Both Kafka and Pulsar are open source projects run by the ASF.
There has been a lot of discussion recently about open source licens‐
ing. Some providers of open source software have modified their
licenses to prevent the cloud providers from using their open source
projects in some applications. This practice highlights an important
difference between open source projects.

Some open source projects are controlled by commercial vendors
and some are controlled by software foundations, like the ASF.
Open source projects are free to change their software license. Today
they may be using a permissive license like Apache 2.0 or MIT, but
tomorrow they could move to a more restrictive licensing scheme. If
you are using an open source project controlled by a commercial
vendor, you run the risk of that vendor changing the license for rea‐
sons specific to their business. If that occurs and you are using the
software in a way that violates the new license and you want to be
able to pick up new updates (for example, security patches), you will
have to find a friendly fork of the project, take on maintenance of
your own fork, or perhaps pay the commercial vendor for a license.

Open source projects controlled by software foundations are very
unlikely to change their licensing. The widely used Apache 2.0
license has been around since 2004. And if a software foundation
did change the license of their open source projects, it is unlikely
that they will make them more restrictive, since most foundations
have a mandate to provide software free of charge and free of
restrictions.

When evaluating open source software, this distinction is something
to keep in mind. Kafka is an open source project under Apache.
However, many of the components that are part of the Kafka ecosys‐
tem are open source, but not under Apache control, such as:

• All client libraries except Java
• Various connectors for integrating with third-party systems

30 | Apache Pulsar Versus Apache Kafka

• Monitoring and dashboard tools
• Schema registry
• Kafka SQL

The Apache Pulsar open source project has a wider range of its eco‐
system within the project. It includes Java, Python, Go, and C++ cli‐
ents as part of the main project. There are several connectors as part
of the Pulsar IO package, such as Aerospike, Cassandra, and AWS
Kinesis. Pulsar comes with a schema registry and an SQL-based
mechanism for querying topics called Pulsar SQL. It includes a
dashboard application as well as Prometheus-based metrics and
alerting capabilities.

Because all of these components are in the main Pulsar project
under Apache stewardship, their licensing is unlikely to become
more restrictive. Also, as long as the project as a whole is being
actively maintained, these components are also being maintained.
Tests are regularly run against these components and incompatibili‐
ties are fixed before a new Pulsar version is released.

Summary
Apache Pulsar has been gaining momentum as an alternative to
Apache Kafka. In this report, we compared Kafka and Pulsar in vari‐
ous dimensions, which are summarized in Table 1.

Table 1. Summary of comparison of Kafka and Pulsar

Dimension Kafka Pulsar
Architectural components ZooKeeper, Kafka broker ZooKeeper, Pulsar

broker, BookKeeper
Replication model Leader–follower Quorum-vote
High-performance pub–sub
messaging

Supported Supported

Message replay Supported Supported
Competing consumers Supported with limitations Supported
Traditional consuming patterns Not supported Supported
Log abstraction Single node Distributed
Tiered storage Not supported Supported
Partitions Required Optional
Performance High Higher

Summary | 31

Dimension Kafka Pulsar
Geo-replication Available through tool or external

projects
Built-in

Community and related projects Large and mature Small and growing
Open source Mixture of ASF and others All ASF

We compared the architecture of both systems and their differing
replication models. Both systems use Apache ZooKeeper and a
broker, but Pulsar splits the broker into two layers: a message serv‐
ing layer and a message storage layer. Pulsar uses the Apache Book‐
Keeper project for its storage layer. This separation of serving and
storing, as well as the horizontal scalability of Apache BookKeeper,
makes it natural to run in cloud native environments like
Kubernetes.

Both Kafka and Pulsar use message replication for durability. Kafka
uses a leader–follower replication model, and Pulsar uses a quo‐
rum–vote replication model.

We looked at the messaging patterns supported by both Kafka and
Pulsar, as well as the messaging patterns of traditional message
brokers such as RabbitMQ that only Pulsar is able to support.
Because Pulsar supports the pub–sub, streaming messaging patterns
and the queue-based patterns of traditional message brokers, in
organizations that run parallel Kafka and RabbitMQ messaging sys‐
tems, it is possible to consolidate those systems into a single Pulsar
messaging system. For organizations looking to deploy a new mes‐
saging system for either streaming or traditional queuing, using Pul‐
sar will future proof your infrastructure in the event that
requirements to support new messaging patterns arise.

Both Kafka and Pulsar are built on the log abstraction, where mes‐
sages are appended to an immutable log. With Kafka, the log is
bound to the broker node, but with Pulsar, the log is distributed
between the bookie nodes.

Partitions are a fundamental concept in Kafka, but an optional one
for Pulsar. This means that Pulsar can provide a degree of simplifi‐
cation over Kafka operationally and when dealing with the client
APIs.

Pulsar offers features such as tiered storage, built-in geo-replication,
and multitenancy that are not available on Kafka. Reports suggest
that Pulsar has a performance advantage over Kafka in both latency

32 | Apache Pulsar Versus Apache Kafka

and throughput. The vast majority of Pulsar’s open source compo‐
nents are controlled by the ASF, not a commercial entity.

Although Pulsar cannot match the Kafka ecosystem and commu‐
nity, it has the edge over Kafka in many dimensions. Given these
advantages, it is not surprising that Pulsar is gaining momentum as
an alternative to Kafka. It can also be expected to continue to gain
ground once more people become aware of its advantages.

Acknowledgments
I would like to thank Sijie Guo for his technical review, Jeff Bleiel for
his insights and patience, and Jess Haberman for her enthusiasm
and support.

Acknowledgments | 33

About the Author
Chris Bartholomew has been working with high-performance pub–
sub systems for over a dozen years. He has tested, supported, and
operated messaging systems that are deployed in banking, capital
markets, and transportation industries. He is the founder of Kafka‐
esque, a cloud-based managed service built around Apache Pulsar.

Prior to working with pub–sub systems, Chris worked in the tele‐
com industry testing data networking equipment running IP, Ether‐
net, and ATM.

https://kafkaesque.io
https://kafkaesque.io

	Cover
	Copyright
	Table of Contents
	Foreword
	Chapter 1. Apache Pulsar Versus Apache Kafka
	What Is Apache Pulsar?
	Architecture
	Kafka
	Pulsar
	Replication Model

	Pub–Sub Messaging: An Overview
	Log Abstraction
	Message Replay

	Traditional Messaging
	Queues and Competing Consumers
	Kafka
	Pulsar
	Pulsar Subscription Models

	Pulsar: Pub–Sub and Queue Together
	Log Abstraction
	Kafka Log
	Pulsar Distributed Log
	Tiered Storage

	Partitions
	Kafka Partitions
	Pulsar Partitions

	Performance
	Tenancy
	Pulsar
	Kafka

	Geo-Replication
	Pulsar
	Kafka

	Ecosystem
	Community and Related Projects
	Open Source

	Summary
	Acknowledgments

	About the Author

