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Foreword

Interest in streaming is growing rapidly. Running operations globally and 24/7 is 
becoming the norm. Sensors and mobile phones are always on, constantly delivering 
live data that needs a response. Operating in real time offers businesses the opportu‐
nity to improve the customer’s experience and gain competitive advantage.

Also, recently, operating in real time has moved from impossible, to hard and expen‐
sive, and now to achievable. It’s little wonder that streaming data is part of the biggest 
new trends in information, including the Internet of Things, machine learning, and 
artificial intelligence.

In In Streaming Systems: The What, When, Where, and How of Large-Scale Data Pro‐
cessing, authors Tyler Akidau, Slava Chernyak, and Reuven Lax tell you how to extract 
value from streaming data. They set the stage with careful definitions of streaming 
data and the role of streaming in every step of data processing. They then take a deep 
dive into important technical issues such as windows on data, exactly-once process‐
ing (supported by both Kafka and SingleStore), how streams interact with data 
tables, and the usefulness of SQL in a streaming architecture. They finish by 
discussing the use of joins with streaming data and how streaming is 
revolutionizing data process‐ing as a whole. In this free excerpt, we feature two key 
chapters from Streaming Sys‐tems:

Streaming 101 (Chapter 1)
What is—and isn’t—streaming data, why there are few actual limitations on
streaming, and an emphasis on the role of unbounded data in streaming systems.

The What, Where, When, and How of Data Processing (Chapter 2)
Describes data processing’s foundations in the batch processing world and its
evolution in the streaming world, relating streaming to data’s increased value

We here at SingleStore are proud to offer you this free excerpt, which may help 
you unlock the full potential of the data available to your business. Traditional 
databases are not designed to efficiently and scalably power streaming data 
applications.
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SingleStore, by contrast, provides a modern, distributed lock-free architecture 
that pairs perfectly with streaming technologies such as Kafka and Spark. The 
combined solution delivers rapid ingest, fast transaction and immediate analytical 
processing, using familiar SQL.

We hope you enjoy this excerpt from Streaming Systems. We encourage you to put the 
information to use in your own applications.

— Peter Guagenti 
SingleStore
April 2019
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CHAPTER 1

Streaming 101

Streaming data processing is a big deal in big data these days, and for good reasons;
among them are the following:

• Businesses crave ever-more timely insights into their data, and switching to
streaming is a good way to achieve lower latency

• The massive, unbounded datasets that are increasingly common in modern busi‐
ness are more easily tamed using a system designed for such never-ending vol‐
umes of data.

• Processing data as they arrive spreads workloads out more evenly over time,
yielding more consistent and predictable consumption of resources.

Despite this business-driven surge of interest in streaming, streaming systems long
remained relatively immature compared to their batch brethren. It’s only recently that
the tide has swung conclusively in the other direction. In my more bumptious
moments, I hope that might be in small part due to the solid dose of goading I origi‐
nally served up in my “Streaming 101” and “Streaming 102” blog posts (on which the
first few chapters of this book are rather obviously based). But in reality, there’s also
just a lot of industry interest in seeing streaming systems mature and a lot of smart
and active folks out there who enjoy building them.

Even though the battle for general streaming advocacy has been, in my opinion, effec‐
tively won, I’m still going to present my original arguments from “Streaming 101”
more or less unaltered. For one, they’re still very applicable today, even if much of
industry has begun to heed the battle cry. And for two, there are a lot of folks out
there who still haven’t gotten the memo; this book is an extended attempt at getting
these points across.

7
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1 For completeness, it’s perhaps worth calling out that this definition includes both true streaming as well as
microbatch implementations. For those of you who aren’t familiar with microbatch systems, they are stream‐
ing systems that use repeated executions of a batch processing engine to process unbounded data. Spark
Streaming is the canonical example in the industry.

To begin, I cover some important background information that will help frame the
rest of the topics I want to discuss. I do this in three specific sections:

Terminology
To talk precisely about complex topics requires precise definitions of terms. For
some terms that have overloaded interpretations in current use, I’ll try to nail
down exactly what I mean when I say them.

Capabilities
I remark on the oft-perceived shortcomings of streaming systems. I also propose
the frame of mind that I believe data processing system builders need to adopt in
order to address the needs of modern data consumers going forward.

Time domains
I introduce the two primary domains of time that are relevant in data processing,
show how they relate, and point out some of the difficulties these two domains
impose.

Terminology: What Is Streaming?
Before going any further, I’d like to get one thing out of the way: what is streaming?
The term streaming is used today to mean a variety of different things (and for sim‐
plicity I’ve been using it somewhat loosely up until now), which can lead to misun‐
derstandings about what streaming really is or what streaming systems are actually
capable of. As a result, I would prefer to define the term somewhat precisely.

The crux of the problem is that many things that ought to be described by what they
are (unbounded data processing, approximate results, etc.), have come to be
described colloquially by how they historically have been accomplished (i.e., via
streaming execution engines). This lack of precision in terminology clouds what
streaming really means, and in some cases it burdens streaming systems themselves
with the implication that their capabilities are limited to characteristics historically
described as “streaming,” such as approximate or speculative results.

Given that well-designed streaming systems are just as capable (technically more so)
of producing correct, consistent, repeatable results as any existing batch engine, I pre‐
fer to isolate the term “streaming” to a very specific meaning:

Streaming system
A type of data processing engine that is designed with infinite datasets in mind.1
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2 Readers familiar with my original “Streaming 101” article might recall that I rather emphatically encouraged
the abandonment of the term “stream” when referring to datasets. That never caught on, which I initially
thought was due to its catchiness and pervasive existing usage. In retrospect, however, I think I was simply
wrong. There actually is great value in distinguishing between the two different types of dataset constitutions:
tables and streams. Indeed, most of the second half of this book is dedicated to understanding the relationship
between those two.

If I want to talk about low-latency, approximate, or speculative results, I use those
specific words rather than imprecisely calling them “streaming.”

Precise terms are also useful when discussing the different types of data one might
encounter. From my perspective, there are two important (and orthogonal) dimen‐
sions that define the shape of a given dataset: cardinality and constitution.

The cardinality of a dataset dictates its size, with the most salient aspect of cardinality
being whether a given dataset is finite or infinite. Here are the two terms I prefer to
use for describing the coarse cardinality in a dataset:

Bounded data
A type of dataset that is finite in size.

Unbounded data
A type of dataset that is infinite in size (at least theoretically).

Cardinality is important because the unbounded nature of infinite datasets imposes
additional burdens on data processing frameworks that consume them. More on this
in the next section.

The constitution of a dataset, on the other hand, dictates its physical manifestation.
As a result, the constitution defines the ways one can interact with the data in ques‐
tion. We won’t get around to deeply examining constitutions until later in this book,
but to give you a brief sense of things, there are two primary constitutions of impor‐
tance:

Table
A holistic view of a dataset at a specific point in time. SQL systems have tradi‐
tionally dealt in tables.

Stream2

An element-by-element view of the evolution of a dataset over time. The Map‐
Reduce lineage of data processing systems have traditionally dealt in streams.

We look quite deeply at the relationship between streams and tables later in this book,
and we’ll also learn about the unifying underlying concept of time-varying relations
that ties them together. But until then, we deal primarily in streams because that’s the
constitution pipeline developers directly interact with in most data processing sys‐
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tems today (both batch and streaming). It’s also the constitution that most naturally
embodies the challenges that are unique to stream processing.

On the Greatly Exaggerated Limitations of Streaming
On that note, let’s next talk a bit about what streaming systems can and can’t do, with
an emphasis on can. One of the biggest things I want to get across in this chapter is
just how capable a well-designed streaming system can be. Streaming systems have
historically been relegated to a somewhat niche market of providing low-latency,
inaccurate, or speculative results, often in conjunction with a more capable batch sys‐
tem to provide eventually correct results; in other words, the Lambda Architecture.

For those of you not already familiar with the Lambda Architecture, the basic idea is
that you run a streaming system alongside a batch system, both performing essen‐
tially the same calculation. The streaming system gives you low-latency, inaccurate
results (either because of the use of an approximation algorithm, or because the
streaming system itself does not provide correctness), and some time later a batch
system rolls along and provides you with correct output. Originally proposed by
Twitter’s Nathan Marz (creator of Storm), it ended up being quite successful because
it was, in fact, a fantastic idea for the time; streaming engines were a bit of a letdown
in the correctness department, and batch engines were as inherently unwieldy as
you’d expect, so Lambda gave you a way to have your proverbial cake and eat it too.
Unfortunately, maintaining a Lambda system is a hassle: you need to build, provision,
and maintain two independent versions of your pipeline and then also somehow
merge the results from the two pipelines at the end.

As someone who spent years working on a strongly consistent streaming engine, I
also found the entire principle of the Lambda Architecture a bit unsavory. Unsurpris‐
ingly, I was a huge fan of Jay Kreps’ “Questioning the Lambda Architecture” post
when it came out. Here was one of the first highly visible statements against the
necessity of dual-mode execution. Delightful. Kreps addressed the issue of repeatabil‐
ity in the context of using a replayable system like Kafka as the streaming intercon‐
nect, and went so far as to propose the Kappa Architecture, which basically means
running a single pipeline using a well-designed system that’s appropriately built for
the job at hand. I’m not convinced that notion requires its own Greek letter name, but
I fully support the idea in principle.

Quite honestly, I’d take things a step further. I would argue that well-designed stream‐
ing systems actually provide a strict superset of batch functionality. Modulo perhaps
an efficiency delta, there should be no need for batch systems as they exist today. And
kudos to the Apache Flink folks for taking this idea to heart and building a system
that’s all-streaming-all-the-time under the covers, even in “batch” mode; I love it.

10 | Chapter 1: Streaming 101
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Batch and Streaming Efficiency Differences
One which I propose is not an inherent limitation of streaming systems, but simply a
consequence of design choices made in most streaming systems thus far. The effi‐
ciency delta between batch and streaming is largely the result of the increased bun‐
dling and more efficient shuffle transports found in batch systems. Modern batch
systems go to great lengths to implement sophisticated optimizations that allow for
remarkable levels of throughput using surprisingly modest compute resources.
There’s no reason the types of clever insights that make batch systems the efficiency
heavyweights they are today couldn’t be incorporated into a system designed for
unbounded data, providing users flexible choice between what we typically consider
to be high-latency, higher-efficiency “batch” processing and low-latency, lower-
efficiency “streaming” processing. This is effectively what we’ve done at Google with
Cloud Dataflow by providing both batch and streaming runners under the same uni‐
fied model. In our case, we use separate runners because we happen to have two inde‐
pendently designed systems optimized for their specific use cases. Long term, from an
engineering perspective, I’d love to see us merge the two into a single system that
incorporates the best parts of both while still maintaining the flexibility of choosing
an appropriate efficiency level. But that’s not what we have today. And honestly,
thanks to the unified Dataflow Model, it’s not even strictly necessary; so it may well
never happen.

The corollary of all this is that broad maturation of streaming systems combined with
robust frameworks for unbounded data processing will in time allow for the relega‐
tion of the Lambda Architecture to the antiquity of big data history where it belongs.
I believe the time has come to make this a reality. Because to do so—that is, to beat
batch at its own game—you really only need two things:

Correctness
This gets you parity with batch. At the core, correctness boils down to consistent
storage. Streaming systems need a method for checkpointing persistent state over
time (something Kreps has talked about in his “Why local state is a fundamental
primitive in stream processing” post), and it must be well designed enough to
remain consistent in light of machine failures. When Spark Streaming first
appeared in the public big data scene a few years ago, it was a beacon of consis‐
tency in an otherwise dark streaming world. Thankfully, things have improved
substantially since then, but it is remarkable how many streaming systems still
try to get by without strong consistency.

Terminology: What Is Streaming? | 11
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3 If you’re unfamiliar with what I mean when I say exactly-once, it’s referring to a specific type of consistency
guarantee that certain data processing frameworks provide. Consistency guarantees are typically bucketed
into three main classes: at-most-once processing, at-least-once processing, and exactly-once processing. Note
that the names in use here refer to the effective semantics as observed within the outputs generated by the
pipeline, not the actual number of times a pipeline might process (or attempt to process) any given record.
For this reason, the term effectively-once is sometimes used instead of exactly-once, since it’s more representa‐
tive of the underlying nature of things. Reuven covers these concepts in much more detail.

To reiterate—because this point is important: strong consistency is required for
exactly-once processing,3 which is required for correctness, which is a require‐
ment for any system that’s going to have a chance at meeting or exceeding the
capabilities of batch systems.  Unless you just truly don’t care about your results, I
implore you to shun any streaming system that doesn’t provide strongly consis‐
tent state. Batch systems don’t require you to verify ahead of time if they are
capable of producing correct answers; don’t waste your time on streaming sys‐
tems that can’t meet that same bar.

If you’re curious to learn more about what it takes to get strong consistency in a
streaming system, I recommend you check out the MillWheel, Spark Streaming,
and Flink snapshotting papers. All three spend a significant amount of time dis‐
cussing consistency. Reuven will dive into consistency guarantees later in the
book, and if you still find yourself craving more, there’s a large amount of quality
information on this topic in the literature and elsewhere.

Tools for reasoning about time
This gets you beyond batch. Good tools for reasoning about time are essential for
dealing with unbounded, unordered data of varying event-time skew. An increas‐
ing number of modern datasets exhibit these characteristics, and existing batch
systems (as well as many streaming systems) lack the necessary tools to cope with
the difficulties they impose (though this is now rapidly changing, even as I write
this). We will spend the bulk of this book explaining and focusing on various fac‐
ets of this point.

To begin with, we get a basic understanding of the important concept of time
domains, after which we take a deeper look at what I mean by unbounded, unor‐
dered data of varying event-time skew. We then spend the rest of this chapter
looking at common approaches to bounded and unbounded data processing,
using both batch and streaming systems.

Event Time Versus Processing Time
To speak cogently about unbounded data processing requires a clear understanding
of the domains of time involved. Within any data processing system, there are typi‐
cally two domains of time that we care about:
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Event time
This is the time at which events actually occurred.

Processing time
This is the time at which events are observed in the system.

Not all use cases care about event times (and if yours doesn’t, hooray! your life is eas‐
ier), but many do. Examples include characterizing user behavior over time, most
billing applications, and many types of anomaly detection, to name a few.

In an ideal world, event time and processing time would always be equal, with events
being processed immediately as they occur. Reality is not so kind, however, and the
skew between event time and processing time is not only nonzero, but often a highly
variable function of the characteristics of the underlying input sources, execution
engine, and hardware. Things that can affect the level of skew include the following:

• Shared resource limitations, like network congestion, network partitions, or
shared CPU in a nondedicated environment

• Software causes such as distributed system logic, contention, and so on
• Features of the data themselves, like key distribution, variance in throughput, or

variance in disorder (i.e., a plane full of people taking their phones out of air‐
plane mode after having used them offline for the entire flight)

As a result, if you plot the progress of event time and processing time in any real-
world system, you typically end up with something that looks a bit like the red line in
Figure 1-1.
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4 Since the original publication of “Streaming 101,” numerous individuals have pointed out to me that it would
have been more intuitive to place processing time on the x-axis and event time on the y-axis. I do agree that
swapping the two axes would initially feel more natural, as event time seems like the dependent variable to
processing time’s independent variable. However, because both variables are monotonic and intimately
related, they’re effectively interdependent variables. So I think from a technical perspective you just have to
pick an axis and stick with it. Math is confusing (especially outside of North America, where it suddenly
becomes plural and gangs up on you).

Figure 1-1. Time-domain mapping. The x-axis represents event-time completeness in the
system; that is, the time X in event time up to which all data with event times less than X
have been observed. The y-axis4 represents the progress of processing time; that is, nor‐
mal clock time as observed by the data processing system as it executes.

In Figure 1-1, the black dashed line with slope of 1 represents the ideal, where pro‐
cessing time and event time are exactly equal; the red line represents reality. In this
example, the system lags a bit at the beginning of processing time, veers closer toward
the ideal in the middle, and then lags again a bit toward the end. At first glance, there
are two types of skew visible in this diagram, each in different time domains:

Processing time
The vertical distance between the ideal and the red line is the lag in the
processing-time domain. That distance tells you how much delay is observed (in
processing time) between when the events for a given time occurred and when
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5 This result really shouldn’t be surprising (but was for me, hence why I’m pointing it out), because we’re effec‐
tively creating a right triangle with the ideal line when measuring the two types of skew/lag. Maths are cool.

they were processed. This is the perhaps the more natural and intuitive of the two
skews.

Event time
The horizontal distance between the ideal and the red line is the amount of
event-time skew in the pipeline at that moment. It tells you how far behind the
ideal (in event time) the pipeline is currently.

In reality, processing-time lag and event-time skew at any given point in time are
identical; they’re just two ways of looking at the same thing.5 The important takeaway
regarding lag/skew is this: Because the overall mapping between event time and pro‐
cessing time is not static (i.e., the lag/skew can vary arbitrarily over time), this means
that you cannot analyze your data solely within the context of when they are observed
by your pipeline if you care about their event times (i.e., when the events actually
occurred). Unfortunately, this is the way many systems designed for unbounded data
have historically operated. To cope with the infinite nature of unbounded datasets,
these systems typically provide some notion of windowing the incoming data. We
discuss windowing in great depth a bit later, but it essentially means chopping up a
dataset into finite pieces along temporal boundaries. If you care about correctness
and are interested in analyzing your data in the context of their event times, you can‐
not define those temporal boundaries using processing time (i.e., processing-time
windowing), as many systems do; with no consistent correlation between processing
time and event time, some of your event-time data are going to end up in the wrong
processing-time windows (due to the inherent lag in distributed systems, the online/
offline nature of many types of input sources, etc.), throwing correctness out the win‐
dow, as it were. We look at this problem in more detail in a number of examples in
the sections that follow, as well as the remainder of the book.

Unfortunately, the picture isn’t exactly rosy when windowing by event time, either. In
the context of unbounded data, disorder and variable skew induce a completeness
problem for event-time windows: lacking a predictable mapping between processing
time and event time, how can you determine when you’ve observed all of the data for
a given event time X? For many real-world data sources, you simply can’t. But the vast
majority of data processing systems in use today rely on some notion of complete‐
ness, which puts them at a severe disadvantage when applied to unbounded datasets.

I propose that instead of attempting to groom unbounded data into finite batches of
information that eventually become complete, we should be designing tools that
allow us to live in the world of uncertainty imposed by these complex datasets. New
data will arrive, old data might be retracted or updated, and any system we build
should be able to cope with these facts on its own, with notions of completeness being
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a convenient optimization for specific and appropriate use cases rather than a seman‐
tic necessity across all of them.

Before getting into specifics about what such an approach might look like, let’s finish
up one more useful piece of background: common data processing patterns.

Data Processing Patterns
At this point, we have enough background established that we can begin looking at
the core types of usage patterns common across bounded and unbounded data pro‐
cessing today. We look at both types of processing and, where relevant, within the
context of the two main types of engines we care about (batch and streaming, where
in this context, I’m essentially lumping microbatch in with streaming because the dif‐
ferences between the two aren’t terribly important at this level).

Bounded Data
Processing bounded data is conceptually quite straightforward, and likely familiar to
everyone. In Figure 1-2, we start out on the left with a dataset full of entropy. We run
it through some data processing engine (typically batch, though a well-designed
streaming engine would work just as well), such as MapReduce, and on the right side
end up with a new structured dataset with greater inherent value.

Figure 1-2. Bounded data processing with a classic batch engine. A finite pool of
unstructured data on the left is run through a data processing engine, resulting in corre‐
sponding structured data on the right.

Though there are of course infinite variations on what you can actually calculate as
part of this scheme, the overall model is quite simple. Much more interesting is the
task of processing an unbounded dataset. Let’s now look at the various ways unboun‐
ded data are typically processed, beginning with the approaches used with traditional
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batch engines and then ending up with the approaches you can take with a system
designed for unbounded data, such as most streaming or microbatch engines.

Unbounded Data: Batch
Batch engines, though not explicitly designed with unbounded data in mind, have
nevertheless been used to process unbounded datasets since batch systems were first
conceived. As you might expect, such approaches revolve around slicing up the
unbounded data into a collection of bounded datasets appropriate for batch
processing.

Fixed windows
The most common way to process an unbounded dataset using repeated runs of a
batch engine is by windowing the input data into fixed-size windows and then pro‐
cessing each of those windows as a separate, bounded data source (sometimes also
called tumbling windows), as in Figure 1-3. Particularly for input sources like logs, for
which events can be written into directory and file hierarchies whose names encode
the window they correspond to, this sort of thing appears quite straightforward at
first blush because you’ve essentially performed the time-based shuffle to get data into
the appropriate event-time windows ahead of time.

In reality, however, most systems still have a completeness problem to deal with
(What if some of your events are delayed en route to the logs due to a network parti‐
tion? What if your events are collected globally and must be transferred to a common
location before processing? What if your events come from mobile devices?), which
means some sort of mitigation might be necessary (e.g., delaying processing until
you’re sure all events have been collected or reprocessing the entire batch for a given
window whenever data arrive late).

Figure 1-3. Unbounded data processing via ad hoc fixed windows with a classic batch
engine. An unbounded dataset is collected up front into finite, fixed-size windows of
bounded data that are then processed via successive runs a of classic batch engine.
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Sessions
This approach breaks down even more when you try to use a batch engine to process
unbounded data into more sophisticated windowing strategies, like sessions. Sessions
are typically defined as periods of activity (e.g., for a specific user) terminated by a
gap of inactivity. When calculating sessions using a typical batch engine, you often
end up with sessions that are split across batches, as indicated by the red marks in
Figure 1-4. We can reduce the number of splits by increasing batch sizes, but at the
cost of increased latency. Another option is to add additional logic to stitch up ses‐
sions from previous runs, but at the cost of further complexity.

Figure 1-4. Unbounded data processing into sessions via ad hoc fixed windows with a
classic batch engine. An unbounded dataset is collected up front into finite, fixed-size
windows of bounded data that are then subdivided into dynamic session windows via
successive runs a of classic batch engine.

Either way, using a classic batch engine to calculate sessions is less than ideal. A nicer
way would be to build up sessions in a streaming manner, which we look at later on.

Unbounded Data: Streaming
Contrary to the ad hoc nature of most batch-based unbounded data processing
approaches, streaming systems are built for unbounded data. As we talked about ear‐
lier, for many real-world, distributed input sources, you not only find yourself dealing
with unbounded data, but also data such as the following:

• Highly unordered with respect to event times, meaning that you need some sort
of time-based shuffle in your pipeline if you want to analyze the data in the con‐
text in which they occurred.

• Of varying event-time skew, meaning that you can’t just assume you’ll always see
most of the data for a given event time X within some constant epsilon of time Y.

There are a handful of approaches that you can take when dealing with data that have
these characteristics. I generally categorize these approaches into four groups: time-
agnostic, approximation, windowing by processing time, and windowing by event
time.
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Let’s now spend a little bit of time looking at each of these approaches.

Time-agnostic
Time-agnostic processing is used for cases in which time is essentially irrelevant; that
is, all relevant logic is data driven. Because everything about such use cases is dictated
by the arrival of more data, there’s really nothing special a streaming engine has to
support other than basic data delivery. As a result, essentially all streaming systems in
existence support time-agnostic use cases out of the box (modulo system-to-system
variances in consistency guarantees, of course, if you care about correctness). Batch
systems are also well suited for time-agnostic processing of unbounded data sources
by simply chopping the unbounded source into an arbitrary sequence of bounded
datasets and processing those datasets independently. We look at a couple of concrete
examples in this section, but given the straightforwardness of handling time-agnostic
processing (from a temporal perspective at least), we won’t spend much more time on
it beyond that.

Filtering.    A very basic form of time-agnostic processing is filtering, an example of
which is rendered in Figure 1-5. Imagine that you’re processing web traffic logs and
you want to filter out all traffic that didn’t originate from a specific domain. You
would look at each record as it arrived, see if it belonged to the domain of interest,
and drop it if not. Because this sort of thing depends only on a single element at any
time, the fact that the data source is unbounded, unordered, and of varying event-
time skew is irrelevant.

Figure 1-5. Filtering unbounded data. A collection of data (flowing left to right) of vary‐
ing types is filtered into a homogeneous collection containing a single type.

Inner joins.    Another time-agnostic example is an inner join, diagrammed in
Figure 1-6. When joining two unbounded data sources, if you care only about the
results of a join when an element from both sources arrive, there’s no temporal ele‐
ment to the logic. Upon seeing a value from one source, you can simply buffer it up in
persistent state; only after the second value from the other source arrives do you need
to emit the joined record. (In truth, you’d likely want some sort of garbage collection
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policy for unemitted partial joins, which would likely be time based. But for a use
case with little or no uncompleted joins, such a thing might not be an issue.)

Figure 1-6. Performing an inner join on unbounded data. Joins are produced when
matching elements from both sources are observed.

Switching semantics to some sort of outer join introduces the data completeness
problem we’ve talked about: after you’ve seen one side of the join, how do you know
whether the other side is ever going to arrive or not? Truth be told, you don’t, so you
need to introduce some notion of a timeout, which introduces an element of time.
That element of time is essentially a form of windowing, which we’ll look at more
closely in a moment.

Approximation algorithms
The second major category of approaches is approximation algorithms, such as
approximate Top-N, streaming k-means, and so on. They take an unbounded source
of input and provide output data that, if you squint at them, look more or less like
what you were hoping to get, as in Figure 1-7. The upside of approximation algo‐
rithms is that, by design, they are low overhead and designed for unbounded data.
The downsides are that a limited set of them exist, the algorithms themselves are
often complicated (which makes it difficult to conjure up new ones), and their
approximate nature limits their utility.

Figure 1-7. Computing approximations on unbounded data. Data are run through a
complex algorithm, yielding output data that look more or less like the desired result on
the other side.

20 | Chapter 1: Streaming 101

http://bit.ly/2JLcOG9
http://bit.ly/2JLQE6O


It’s worth noting that these algorithms typically do have some element of time in their
design (e.g., some sort of built-in decay). And because they process elements as they
arrive, that time element is usually processing-time based. This is particularly impor‐
tant for algorithms that provide some sort of provable error bounds on their approxi‐
mations. If those error bounds are predicated on data arriving in order, they mean
essentially nothing when you feed the algorithm unordered data with varying event-
time skew. Something to keep in mind.

Approximation algorithms themselves are a fascinating subject, but as they are essen‐
tially another example of time-agnostic processing (modulo the temporal features of
the algorithms themselves), they’re quite straightforward to use and thus not worth
further attention, given our current focus.

Windowing
The remaining two approaches for unbounded data processing are both variations of
windowing. Before diving into the differences between them, I should make it clear
exactly what I mean by windowing, insomuch as we touched on it only briefly in the
previous section. Windowing is simply the notion of taking a data source (either
unbounded or bounded), and chopping it up along temporal boundaries into finite
chunks for processing. Figure 1-8 shows three different windowing patterns.

Figure 1-8. Windowing strategies. Each example is shown for three different keys, high‐
lighting the difference between aligned windows (which apply across all the data) and
unaligned windows (which apply across a subset of the data).

Let’s take a closer look at each strategy:

Fixed windows (aka tumbling windows)
We discussed fixed windows earlier. Fixed windows slice time into segments with
a fixed-size temporal length. Typically (as shown in Figure 1-9), the segments for
fixed windows are applied uniformly across the entire dataset, which is an exam‐
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across a third windowing time domain: tuple-based windowing (i.e., windows whose sizes are counted in
numbers of elements). However, tuple-based windowing is essentially a form of processing-time windowing
in which elements are assigned monotonically increasing timestamps as they arrive at the system. As such, we
won’t discuss tuple-based windowing in detail any further.

ple of aligned windows. In some cases, it’s desirable to phase-shift the windows
for different subsets of the data (e.g., per key) to spread window completion load
more evenly over time, which instead is an example of unaligned windows
because they vary across the data.6

Sliding windows (aka hopping windows)
A generalization of fixed windows, sliding windows are defined by a fixed length
and a fixed period. If the period is less than the length, the windows overlap. If
the period equals the length, you have fixed windows. And if the period is greater
than the length, you have a weird sort of sampling window that looks only at sub‐
sets of the data over time. As with fixed windows, sliding windows are typically
aligned, though they can be unaligned as a performance optimization in certain
use cases. Note that the sliding windows in Figure 1-8 are drawn as they are to
give a sense of sliding motion; in reality, all five windows would apply across the
entire dataset.

Sessions
An example of dynamic windows, sessions are composed of sequences of events
terminated by a gap of inactivity greater than some timeout. Sessions are com‐
monly used for analyzing user behavior over time, by grouping together a series
of temporally related events (e.g., a sequence of videos viewed in one sitting). Ses‐
sions are interesting because their lengths cannot be defined a priori; they are
dependent upon the actual data involved. They’re also the canonical example of
unaligned windows because sessions are practically never identical across differ‐
ent subsets of data (e.g., different users).

The two domains of time we discussed earlier (processing time and event time) are
essentially the two we care about.7 Windowing makes sense in both domains, so let’s
look at each in detail and see how they differ. Because processing-time windowing
has historically been more common, we’ll start there.

Windowing by processing time.    When windowing by processing time, the system
essentially buffers up incoming data into windows until some amount of processing
time has passed. For example, in the case of five-minute fixed windows, the system
would buffer data for five minutes of processing time, after which it would treat all of
the data it had observed in those five minutes as a window and send them down‐
stream for processing.
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Figure 1-9. Windowing into fixed windows by processing time. Data are collected into
windows based on the order they arrive in the pipeline.

There are a few nice properties of processing-time windowing:

• It’s simple. The implementation is extremely straightforward because you never
worry about shuffling data within time. You just buffer things as they arrive and
send them downstream when the window closes.

• Judging window completeness is straightforward. Because the system has perfect
knowledge of whether all inputs for a window have been seen, it can make per‐
fect decisions about whether a given window is complete. This means there is no
need to be able to deal with “late” data in any way when windowing by processing
time.

• If you’re wanting to infer information about the source as it is observed,
processing-time windowing is exactly what you want. Many monitoring scenar‐
ios fall into this category. Imagine tracking the number of requests per second
sent to a global-scale web service. Calculating a rate of these requests for the pur‐
pose of detecting outages is a perfect use of processing-time windowing.

Good points aside, there is one very big downside to processing-time windowing: if
the data in question have event times associated with them, those data must arrive in
event-time order if the processing-time windows are to reflect the reality of when those
events actually happened. Unfortunately, event-time ordered data are uncommon in
many real-world, distributed input sources.

As a simple example, imagine any mobile app that gathers usage statistics for later
processing. For cases in which a given mobile device goes offline for any amount of
time (brief loss of connectivity, airplane mode while flying across the country, etc.),
the data recorded during that period won’t be uploaded until the device comes online
again. This means that data might arrive with an event-time skew of minutes, hours,
days, weeks, or more. It’s essentially impossible to draw any sort of useful inferences
from such a dataset when windowed by processing time.
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As another example, many distributed input sources might seem to provide event-
time ordered (or very nearly so) data when the overall system is healthy. Unfortu‐
nately, the fact that event-time skew is low for the input source when healthy does not
mean it will always stay that way. Consider a global service that processes data collec‐
ted on multiple continents. If network issues across a bandwidth-constrained trans‐
continental line (which, sadly, are surprisingly common) further decrease bandwidth
and/or increase latency, suddenly a portion of your input data might begin arriving
with much greater skew than before. If you are windowing those data by processing
time, your windows are no longer representative of the data that actually occurred
within them; instead, they represent the windows of time as the events arrived at the
processing pipeline, which is some arbitrary mix of old and current data.

What we really want in both of those cases is to window data by their event times in a
way that is robust to the order of arrival of events. What we really want is event-time
windowing.

Windowing by event time.    Event-time windowing is what you use when you need to
observe a data source in finite chunks that reflect the times at which those events
actually happened. It’s the gold standard of windowing. Prior to 2016, most data pro‐
cessing systems in use lacked native support for it (though any system with a decent
consistency model, like Hadoop or Spark Streaming 1.x, could act as a reasonable
substrate for building such a windowing system). I’m happy to say that the world of
today looks very different, with multiple systems, from Flink to Spark to Storm to
Apex, natively supporting event-time windowing of some sort.

Figure 1-10 shows an example of windowing an unbounded source into one-hour
fixed windows.

Figure 1-10. Windowing into fixed windows by event time. Data are collected into win‐
dows based on the times at which they occurred. The black arrows call out example data
that arrived in processing-time windows that differed from the event-time windows to
which they belonged.

The black arrows in Figure 1-10 call out two particularly interesting pieces of data.
Each arrived in processing-time windows that did not match the event-time windows
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to which each bit of data belonged. As such, if these data had been windowed into
processing-time windows for a use case that cared about event times, the calculated
results would have been incorrect. As you would expect, event-time correctness is
one nice thing about using event-time windows.

Another nice thing about event-time windowing over an unbounded data source is
that you can create dynamically sized windows, such as sessions, without the arbi‐
trary splits observed when generating sessions over fixed windows (as we saw previ‐
ously in the sessions example from “Unbounded Data: Streaming” on page 18), as
demonstrated in Figure 1-11.

Figure 1-11. Windowing into session windows by event time. Data are collected into ses‐
sion windows capturing bursts of activity based on the times that the corresponding
events occurred. The black arrows again call out the temporal shuffle necessary to put
the data into their correct event-time locations.

Of course, powerful semantics rarely come for free, and event-time windows are no
exception. Event-time windows have two notable drawbacks due to the fact that win‐
dows must often live longer (in processing time) than the actual length of the window
itself:

Buffering
Due to extended window lifetimes, more buffering of data is required. Thank‐
fully, persistent storage is generally the cheapest of the resource types most data
processing systems depend on (the others being primarily CPU, network band‐
width, and RAM). As such, this problem is typically much less of a concern than
you might think when using any well-designed data processing system with
strongly consistent persistent state and a decent in-memory caching layer. Also,
many useful aggregations do not require the entire input set to be buffered (e.g.,
sum or average), but instead can be performed incrementally, with a much
smaller, intermediate aggregate stored in persistent state.

Completeness
Given that we often have no good way of knowing when we’ve seen all of the data
for a given window, how do we know when the results for the window are ready
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to materialize? In truth, we simply don’t. For many types of inputs, the system
can give a reasonably accurate heuristic estimate of window completion via
something like the watermarks found in MillWheel, Cloud Dataflow, and Flink.
But for cases in which absolute correctness is paramount (again, think billing),
the only real option is to provide a way for the pipeline builder to express when
they want results for windows to be materialized and how those results should be
refined over time. Dealing with window completeness (or lack thereof) is a fasci‐
nating topic but one perhaps best explored in the context of concrete examples,
which we look at next.

Summary
Whew! That was a lot of information. If you’ve made it this far, you are to be com‐
mended! But we are only just getting started. Before forging ahead to looking in
detail at the Beam Model approach, let’s briefly step back and recap what we’ve
learned so far. In this chapter, we’ve done the following:

• Clarified terminology, focusing the definition of “streaming” to refer to systems
built with unbounded data in mind, while using more descriptive terms like
approximate/speculative results for distinct concepts often categorized under the
“streaming” umbrella. Additionally, we highlighted two important dimensions of
large-scale datasets: cardinality (i.e., bounded versus unbounded) and encoding
(i.e., table versus stream), the latter of which will consume much of the second
half of the book.

• Assessed the relative capabilities of well-designed batch and streaming systems,
positing streaming is in fact a strict superset of batch, and that notions like the
Lambda Architecture, which are predicated on streaming being inferior to batch,
are destined for retirement as streaming systems mature.

• Proposed two high-level concepts necessary for streaming systems to both catch
up to and ultimately surpass batch, those being correctness and tools for reason‐
ing about time, respectively.

• Established the important differences between event time and processing time,
characterized the difficulties those differences impose when analyzing data in the
context of when they occurred, and proposed a shift in approach away from
notions of completeness and toward simply adapting to changes in data over
time.

• Looked at the major data processing approaches in common use today for boun‐
ded and unbounded data, via both batch and streaming engines, roughly catego‐
rizing the unbounded approaches into: time-agnostic, approximation,
windowing by processing time, and windowing by event time.
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Next up, we dive into the details of the Beam Model, taking a conceptual look at how
we’ve broken up the notion of data processing across four related axes: what, where,
when, and how. We also take a detailed look at processing a simple, concrete example
dataset across multiple scenarios, highlighting the plurality of use cases enabled by
the Beam Model, with some concrete APIs to ground us in reality. These examples
will help drive home the notions of event time and processing time introduced in this
chapter while additionally exploring new concepts such as watermarks.
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1 If you’re fortunate enough to be reading the Safari version of the book, you have full-blown time-lapse anima‐
tions just like in “Streaming 102”. For print, Kindle, and other ebook versions, there are static images with a
link to animated versions on the web.

CHAPTER 2

The What, Where, When, and How
of Data Processing

Okay party people, it’s time to get concrete!

Chapter 1 focused on three main areas: terminology, defining precisely what I mean
when I use overloaded terms like “streaming”; batch versus streaming, comparing the
theoretical capabilities of the two types of systems, and postulating that only two
things are necessary to take streaming systems beyond their batch counterparts: cor‐
rectness and tools for reasoning about time; and data processing patterns, looking at
the conceptual approaches taken with both batch and streaming systems when pro‐
cessing bounded and unbounded data.

In this chapter, we’re now going to focus further on the data processing patterns from
Chapter 1, but in more detail, and within the context of concrete examples. By the
time we’re finished, we’ll have covered what I consider to be the core set of principles
and concepts required for robust out-of-order data processing; these are the tools for
reasoning about time that truly get you beyond classic batch processing.

To give you a sense of what things look like in action, I use snippets of Apache Beam
code, coupled with time-lapse diagrams1 to provide a visual representation of the
concepts. Apache Beam is a unified programming model and portability layer for
batch and stream processing, with a set of concrete SDKs in various languages (e.g.,
Java and Python). Pipelines written with Apache Beam can then be portably run on
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any of the supported execution engines (Apache Apex, Apache Flink, Apache Spark,
Cloud Dataflow, etc.).

I use Apache Beam here for examples not because this is a Beam book (it’s not), but
because it most completely embodies the concepts described in this book. Back when
“Streaming 102” was originally written (back when it was still the Dataflow Model
from Google Cloud Dataflow and not the Beam Model from Apache Beam), it was
literally the only system in existence that provided the amount of expressiveness nec‐
essary for all the examples we’ll cover here. A year and a half later, I’m happy to say
much has changed, and most of the major systems out there have moved or are mov‐
ing toward supporting a model that looks a lot like the one described in this book. So
rest assured that the concepts we cover here, though informed through the Beam
lens, as it were, will apply equally across most other systems you’ll come across.

Roadmap
To help set the stage for this chapter, I want to lay out the five main concepts that will
underpin all of the discussions therein, and really, for most of the rest of Part 1. We’ve
already covered two of them.

In Chapter 1, I first established the critical distinction between event time (the time
that events happen) and processing time (the time they are observed during process‐
ing). This provides the foundation for one of the main theses put forth in this book: if
you care about both correctness and the context within which events actually occur‐
red, you must analyze data relative to their inherent event times, not the processing
time at which they are encountered during the analysis itself.

I then introduced the concept of windowing (i.e., partitioning a dataset along tempo‐
ral boundaries), which is a common approach used to cope with the fact that
unbounded data sources technically might never end. Some simpler examples of win‐
dowing strategies are fixed and sliding windows, but more sophisticated types of win‐
dowing, such as sessions (in which the windows are defined by features of the data
themselves; for example, capturing a session of activity per user followed by a gap of
inactivity) also see broad usage.

In addition to these two concepts, we’re now going to look closely at three more:

Triggers
A trigger is a mechanism for declaring when the output for a window should be
materialized relative to some external signal. Triggers provide flexibility in choos‐
ing when outputs should be emitted. In some sense, you can think of them as a
flow control mechanism for dictating when results should be materialized.
Another way of looking at it is that triggers are like the shutter-release on a cam‐
era, allowing you to declare when to take a snapshots in time of the results being
computed.
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Triggers also make it possible to observe the output for a window multiple times
as it evolves. This in turn opens up the door to refining results over time, which
allows for providing speculative results as data arrive, as well as dealing with
changes in upstream data (revisions) over time or data that arrive late (e.g.,
mobile scenarios, in which someone’s phone records various actions and their
event times while the person is offline and then proceeds to upload those events
for processing upon regaining connectivity).

Watermarks
A watermark is a notion of input completeness with respect to event times. A
watermark with value of time X makes the statement: “all input data with event
times less than X have been observed.” As such, watermarks act as a metric of
progress when observing an unbounded data source with no known end. We
touch upon the basics of watermarks in this chapter, and then Slava goes super
deep on the subject in later in the book.

Accumulation
An accumulation mode specifies the relationship between multiple results that
are observed for the same window. Those results might be completely disjointed;
that is, representing independent deltas over time, or there might be overlap
between them. Different accumulation modes have different semantics and costs
associated with them and thus find applicability across a variety of use cases.

Also, because I think it makes it easier to understand the relationships between all of
these concepts, we revisit the old and explore the new within the structure of answer‐
ing four questions, all of which I propose are critical to every unbounded data pro‐
cessing problem:

• What results are calculated? This question is answered by the types of transfor‐
mations within the pipeline. This includes things like computing sums, building
histograms, training machine learning models, and so on. It’s also essentially the
question answered by classic batch processing

• Where in event time are results calculated? This question is answered by the use
of event-time windowing within the pipeline. This includes the common exam‐
ples of windowing from Chapter 1 (fixed, sliding, and sessions); use cases that
seem to have no notion of windowing (e.g., time-agnostic processing; classic
batch processing also generally falls into this category); and other, more complex
types of windowing, such as time-limited auctions. Also note that it can include
processing-time windowing, as well, if you assign ingress times as event times for
records as they arrive at the system.

• When in processing time are results materialized? This question is answered by
the use of triggers and (optionally) watermarks. There are infinite variations on
this theme, but the most common patterns are those involving repeated updates
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(i.e., materialized view semantics), those that utilize a watermark to provide a sin‐
gle output per window only after the corresponding input is believed to be com‐
plete (i.e., classic batch processing semantics applied on a per-window basis), or
some combination of the two.

• How do refinements of results relate? This question is answered by the type of
accumulation used: discarding (in which results are all independent and distinct),
accumulating (in which later results build upon prior ones), or accumulating and
retracting (in which both the accumulating value plus a retraction for the previ‐
ously triggered value(s) are emitted).

We look at each of these questions in much more detail throughout the rest of the
book. And, yes, I’m going to run this color scheme thing into the ground in an
attempt to make it abundantly clear which concepts relate to which question in the
What/Where/When/How idiom. You’re welcome <winky-smiley/>.2

Batch Foundations: What and Where
Okay, let’s get this party started. First stop: batch processing.

What: Transformations
The transformations applied in classic batch processing answer the question: “What
results are calculated?” Even though you are likely already familiar with classic batch
processing, we’re going to start there anyway because it’s the foundation on top of
which we add all of the other concepts.

In the rest of this chapter (and indeed, through much of the book), we look at a single
example: computing keyed integer sums over a simple dataset consisting of nine val‐
ues. Let’s imagine that we’ve written a team-based mobile game and we want to build
a pipeline that calculates team scores by summing up the individual scores reported
by users’ phones. If we were to capture our nine example scores in a SQL table named
“UserScores,” it might look something like this:

> SELECT * FROM UserScores ORDER BY EventTime;
------------------------------------------------
| Name  | Team  | Score | EventTime | ProcTime |
------------------------------------------------
| Julie | TeamX |     5 |  12:00:26 | 12:05:19 |
| Frank | TeamX |     9 |  12:01:26 | 12:08:19 |
| Ed    | TeamX |     7 |  12:02:26 | 12:05:39 |
| Julie | TeamX |     8 |  12:03:06 | 12:07:06 |
| Amy   | TeamX |     3 |  12:03:39 | 12:06:13 |

32 | Chapter 2: The What, Where, When, and How of Data Processing



| Fred  | TeamX |     4 |  12:04:19 | 12:06:39 |
| Naomi | TeamX |     3 |  12:06:39 | 12:07:19 |
| Becky | TeamX |     8 |  12:07:26 | 12:08:39 |
| Naomi | TeamX |     1 |  12:07:46 | 12:09:00 |
------------------------------------------------

Note that all the scores in this example are from users on the same team; this is to
keep the example simple, given that we have a limited number of dimensions in our
diagrams that follow. And because we’re grouping by team, we really just care about
the last three columns:

Score

The individual user score associated with this event

EventTime

The event time for the score; that is, the time at which the score occurred

ProcTime

The processing for the score; that is, the time at which the score was observed by
the pipeline

For each example pipeline, we’ll look at a time-lapse diagram that highlights how the
data evolves over time. Those diagrams plot our nine scores in the two dimensions of
time we care about: event time in the x-axis, and processing time in the y-axis.
Figure 2-1 illustrates what a static plot of the input data looks like.

Figure 2-1. Nine input records, plotted in both event time and processing time

Subsequent time-lapse diagrams are either animations (Safari) or a sequence of
frames (print and all other digital formats), allowing you to see how the data are pro‐
cessed over time (more on this shortly after we get to the first time-lapse diagram).
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Preceding each example is a short snippet of Apache Beam Java SDK pseudocode to
make the definition of the pipeline more concrete. It is pseudocode in the sense that I
sometime bend the rules to make the examples clearer, elide details (like the use of
concrete I/O sources), or simplify names (the trigger names in Beam Java 2.x and ear‐
lier are painfully verbose; I use simpler names for clarity). Beyond minor things like
those, it’s otherwise real-world Beam code (and real code is available on GitHub for
all examples in this chapter).

If you’re already familiar with something like Spark or Flink, you should have a rela‐
tively easy time understanding what the Beam code is doing. But to give you a crash
course in things, there are two basic primitives in Beam:

PCollections

These represent datasets (possibly massive ones) across which parallel transfor‐
mations can be performed (hence the “P” at the beginning of the name).

PTransforms

These are applied to PCollections to create new PCollections. PTransforms
may perform element-wise transformations, they may group/aggregate multiple
elements together, or they may be a composite combination of other PTrans
forms, as depicted in Figure 2-2.

Figure 2-2. Types of transformations

For the purposes of our examples, we typically assume that we start out with a pre-
loaded PCollection<KV<Team, Integer>> named “input” (that is, a PCollection
composed of key/value pairs of Teams and Integers, where the Teams are just some‐
thing like Strings representing team names, and the Integers are scores from any
individual on the corresponding team). In a real-world pipeline, we would’ve
acquired input by reading in a PCollection<String> of raw data (e.g., log records)
from an I/O source and then transforming it into a PCollection<KV<Team, Inte
ger>> by parsing the log records into appropriate key/value pairs. For the sake of
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clarity in this first example, I include pseudocode for all of those steps, but in subse‐
quent examples, I elide the I/O and parsing.

Thus, for a pipeline that simply reads in data from an I/O source, parses team/score
pairs, and calculates per-team sums of scores, we’d have something like that shown in
Example 2-1.

Example 2-1. Summation pipeline

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals =
  input.apply(Sum.integersPerKey());

Key/value data are read from an I/O source, with a Team (e.g., String of the team
name) as the key and an Integer (e.g., individual team member scores) as the value.
The values for each key are then summed together to generate per-key sums (e.g.,
total team score) in the output collection.

For all the examples to come, after seeing a code snippet describing the pipeline that
we’re analyzing, we’ll then look at a time-lapse diagram showing the execution of that
pipeline over our concrete dataset for a single key. In a real pipeline, you can imagine
that similar operations would be happening in parallel across multiple machines, but
for the sake of our examples, it will be clearer to keep things simple.

As noted previously, Safari editions present the complete execution as an animated
movie, whereas print and all other digital formats use a static sequence of key frames
that provide a sense of how the pipeline progresses over time. In both cases, we also
provide a URL to a fully animated version on www.streamingbook.net.

Each diagram plots the inputs and outputs across two dimensions: event time (on the
x-axis) and processing time (on the y-axis). Thus, real time as observed by the pipe‐
line progresses from bottom to top, as indicated by the thick horizontal black line that
ascends in the processing-time axis as time progresses. Inputs are circles, with the
number inside the circle representing the value of that specific record. They start out
light gray, and darken as the pipeline observes them.

As the pipeline observes values, it accumulates them in its intermediate state and
eventually materializes the aggregate results as output. State and output are repre‐
sented by rectangles (gray for state, blue for output), with the aggregate value near the
top, and with the area covered by the rectangle representing the portions of event
time and processing time accumulated into the result. For the pipeline in
Example 2-1, it would look something like that shown in Figure 2-3 when executed
on a classic batch engine.
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Figure 2-3. Classic batch processing

Because this is a batch pipeline, it accumulates state until it’s seen all of the inputs
(represented by the dashed green line at the top), at which point it produces its single
output of 48. In this example, we’re calculating a sum over all of event time because
we haven’t applied any specific windowing transformations; hence the rectangles for
state and output cover the entirety of the x-axis. If we want to process an unbounded
data source, however, classic batch processing won’t be sufficient; we can’t wait for the
input to end, because it effectively never will. One of the concepts we want is win‐
dowing, which we introduced in Chapter 1. Thus, within the context of our second
question—“Where in event time are results calculated?”—we’ll now briefly revisit
windowing.

Where: Windowing
As discussed in Chapter 1, windowing is the process of slicing up a data source along
temporal boundaries. Common windowing strategies include fixed windows, sliding
windows, and sessions windows, as demonstrated in Figure 2-4.
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Figure 2-4. Example windowing strategies. Each example is shown for three different
keys, highlighting the difference between aligned windows (which apply across all the
data) and unaligned windows (which apply across a subset of the data).

To get a better sense of what windowing looks like in practice, let’s take our integer
summation pipeline and window it into fixed, two-minute windows. With Beam, the
change is a simple addition of a Window.into transform, which you can see highligh‐
ted in Example 2-2.

Example 2-2. Windowed summation code

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES)))
  .apply(Sum.integersPerKey());

Recall that Beam provides a unified model that works in both batch and streaming
because semantically batch is really just a subset of streaming. As such, let’s first exe‐
cute this pipeline on a batch engine; the mechanics are more straightforward, and it
will give us something to directly compare against when we switch to a streaming
engine. Figure 2-5 presents the result.
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Figure 2-5. Windowed summation on a batch engine

As before, inputs are accumulated in state until they are entirely consumed, after
which output is produced. In this case, however, instead of one output, we get four: a
single output, for each of the four relevant two-minute event-time windows.

At this point we’ve revisited the two main concepts that I introduced in Chapter 1: the
relationship between the event-time and processing-time domains, and windowing.
If we want to go any further, we’ll need to start adding the new concepts mentioned at
the beginning of this section: triggers, watermarks, and accumulation.

Going Streaming: When and How
We just observed the execution of a windowed pipeline on a batch engine. But, ide‐
ally, we’d like to have lower latency for our results, and we’d also like to natively han‐
dle unbounded data sources. Switching to a streaming engine is a step in the right
direction, but our previous strategy of waiting until our input has been consumed in
its entirety to generate output is no longer feasible. Enter triggers and watermarks.

When: The Wonderful Thing About Triggers Is Triggers Are Wonderful
Things!
Triggers provide the answer to the question: “When in processing time are results
materialized?” Triggers declare when output for a window should happen in process‐
ing time (though the triggers themselves might make those decisions based on things
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3 And indeed, we did just that with the original triggers feature in Beam. In retrospect, we went a bit overboard.
Future iterations will be simpler and easier to use, and in this book I focus only on the pieces that are likely to
remain in some form or another.

that happen in other time domains, such as watermarks progressing in the event-time
domain, as we’ll see in a few moments). Each specific output for a window is referred
to as a pane of the window.

Though it’s possible to imagine quite a breadth of possible triggering semantics,3 con‐
ceptually there are only two generally useful types of triggers, and practical applica‐
tions almost always boil down using either one or a combination of both:

Repeated update triggers
These periodically generate updated panes for a window as its contents evolve.
These updates can be materialized with every new record, or they can happen
after some processing-time delay, such as once a minute. The choice of period for
a repeated update trigger is primarily an exercise in balancing latency and cost.

Completeness triggers
These materialize a pane for a window only after the input for that window is
believed to be complete to some threshold. This type of trigger is most analogous
to what we’re familiar with in batch processing: only after the input is complete
do we provide a result. The difference in the trigger-based approach is that the
notion of completeness is scoped to the context of a single window, rather than
always being bound to the completeness of the entire input.

Repeated update triggers are the most common type of trigger encountered in
streaming systems. They are simple to implement and simple to understand, and they
provide useful semantics for a specific type of use case: repeated (and eventually con‐
sistent) updates to a materialized dataset, analogous to the semantics you get with
materialized views in the database world.

Completeness triggers are less frequently encountered, but provide streaming seman‐
tics that more closely align with those from the classic batch processing world. They
also provide tools for reasoning about things like missing data and late data, both of
which we discuss shortly (and in the next chapter) as we explore the underlying
primitive that drives completeness triggers: watermarks.

But first, let’s start simple and look at some basic repeated update triggers in action.
To make the notion of triggers a bit more concrete, let’s go ahead and add the most
straightforward type of trigger to our example pipeline: a trigger that fires with every
new record, as shown in Example 2-3.
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Example 2-3. Triggering repeatedly with every record

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
                .triggering(Repeatedly(AfterCount(1))));
  .apply(Sum.integersPerKey());

If we were to run this new pipeline on a streaming engine, the results would look
something like that shown in Figure 2-6.

Figure 2-6. Per-record triggering on a streaming engine

You can see how we now get multiple outputs (panes) for each window: once per cor‐
responding input. This sort of triggering pattern works well when the output stream
is being written to some sort of table that you can simply poll for results. Any time
you look in the table, you’ll see the most up-to-date value for a given window, and
those values will converge toward correctness over time.

One downside of per-record triggering is that it’s quite chatty. When processing
large-scale data, aggregations like summation provide a nice opportunity to reduce
the cardinality of the stream without losing information. This is particularly noticea‐
ble for cases in which you have high-volume keys; for our example, massive teams
with lots of active players. Imagine a massively multiplayer game in which players are
split into one of two factions, and you want to tally stats on a per-faction basis. It’s
probably unnecessary to update your tallies with every new input record for every
player in a given faction. Instead, you might be happy updating them after some
processing-time delay, say every second, or every minute. The nice side effect of using
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processing-time delays is that it has an equalizing effect across high-volume keys or
windows: the resulting stream ends up being more uniform cardinality-wise.

There are two different approaches to processing-time delays in triggers: aligned
delays (where the delay slices up processing time into fixed regions that align across
keys and windows) and unaligned delays (where the delay is relative to the data
observed within a given window). A pipeline with unaligned delays might look like
Example 2-4, the results of which are shown in Figure 2-7.

Example 2-4. Triggering on aligned two-minute processing-time boundaries

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(Repeatedly(AlignedDelay(TWO_MINUTES)))
  .apply(Sum.integersPerKey());

Figure 2-7. Two-minute aligned delay triggers (i.e., microbatching)

This sort of aligned delay trigger is effectively what you get from a microbatch
streaming system like Spark Streaming. The nice thing about it is predictability; you
get regular updates across all modified windows at the same time. That’s also the
downside: all updates happen at once, which results in bursty workloads that often
require greater peak provisioning to properly handle the load. The alternative is to
use an unaligned delay. That would look something Example 2-5 in Beam. Figure 2-8
presents the results.
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Example 2-5. Triggering on unaligned two-minute processing-time boundaries

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(Repeatedly(UnalignedDelay(TWO_MINUTES))
  .apply(Sum.integersPerKey());

Figure 2-8. Two-minute unaligned delay triggers

Contrasting the unaligned delays in Figure 2-8 to the aligned delays in Figure 2-6, it’s
easy to see how the unaligned delays spread the load out more evenly across time.
The actual latencies involved for any given window differ between the two, some‐
times more and sometimes less, but in the end the average latency will remain essen‐
tially the same. From that perspective, unaligned delays are typically the better choice
for large-scale processing because they result in a more even load distribution over
time.

Repeated update triggers are great for use cases in which we simply want periodic
updates to our results over time and are fine with those updates converging toward
correctness with no clear indication of when correctness is achieved. However, as we
discussed in Chapter 1, the vagaries of distributed systems often lead to a varying
level of skew between the time an event happens and the time it’s actually observed by
your pipeline, which means it can be difficult to reason about when your output
presents an accurate and complete view of your input data. For cases in which input
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completeness matters, it’s important to have some way of reasoning about complete‐
ness rather than blindly trusting the results calculated by whichever subset of data
happen to have found their way to your pipeline. Enter watermarks.

When: Watermarks
Watermarks are a supporting aspect of the answer to the question: “When in process‐
ing time are results materialized?” Watermarks are temporal notions of input com‐
pleteness in the event-time domain. Worded differently, they are the way the system
measures progress and completeness relative to the event times of the records being
processed in a stream of events (either bounded or unbounded, though their useful‐
ness is more apparent in the unbounded case).

Recall this diagram from Chapter 1, slightly modified in Figure 2-9, in which I
described the skew between event time and processing time as an ever-changing
function of time for most real-world distributed data processing systems.

Figure 2-9. Event-time progress, skew, and watermarks

That meandering red line that I claimed represented reality is essentially the water‐
mark; it captures the progress of event-time completeness as processing time pro‐
gresses. Conceptually, you can think of the watermark as a function, F(P) → E, which
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4 More accurately, the input to the function is really the state at time P of everything upstream of the point in
the pipeline where the watermark is being observed: the input source, buffered data, data actively being pro‐
cessed, and so on; but conceptually it’s simpler to think of it as a mapping from processing time to event time.

takes a point in processing time and returns a point in event time.4 That point in
event time, E, is the point up to which the system believes all inputs with event times
less than E have been observed. In other words, it’s an assertion that no more data
with event times less than E will ever be seen again. Depending upon the type of
watermark, perfect or heuristic, that assertion can be a strict guarantee or an educated
guess, respectively:

Perfect watermarks
For the case in which we have perfect knowledge of all of the input data, it’s pos‐
sible to construct a perfect watermark. In such a case, there is no such thing as
late data; all data are early or on time.

Heuristic watermarks
For many distributed input sources, perfect knowledge of the input data is
impractical, in which case the next best option is to provide a heuristic water‐
mark. Heuristic watermarks use whatever information is available about the
inputs (partitions, ordering within partitions if any, growth rates of files, etc.) to
provide an estimate of progress that is as accurate as possible. In many cases,
such watermarks can be remarkably accurate in their predictions. Even so, the
use of a heuristic watermark means that it might sometimes be wrong, which will
lead to late data. We show you about ways to deal with late data soon.

Because they provide a notion of completeness relative to our inputs, watermarks
form the foundation for the second type of trigger mentioned previously: complete‐
ness triggers. Watermarks themselves are a fascinating and complex topic, as you’ll see
when you get to Slava’s watermarks deep dive. But for now, let’s look at them in action
by updating our example pipeline to utilize a completeness trigger built upon water‐
marks, as demonstrated in Example 2-6.

Example 2-6. Watermark completeness trigger

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(AfterWatermark()))
  .apply(Sum.integersPerKey());

Now, an interesting quality of watermarks is that they are a class of functions, mean‐
ing there are multiple different functions F(P) → E that satisfy the properties of a
watermark, to varying degrees of success. As I noted earlier, for situations in which
you have perfect knowledge of your input data, it might be possible to build a perfect
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5 Note that I specifically chose to omit the value of 9 from the heuristic watermark because it will help me to
make some important points about late data and watermark lag. In reality, a heuristic watermark might be just
as likely to omit some other value(s) instead, which in turn could have significantly less drastic effect on the
watermark. If winnowing late-arriving data from the watermark is your goal (which is very valid in some
cases, such as abuse detection, for which you just want to see a significant majority of the data as quickly as
possible), you don’t necessarily want a heuristic watermark rather than a perfect watermark. What you really
want is a percentile watermark, which explicitly drops some percentile of late-arriving data from its calcula‐
tions.

watermark, which is the ideal situation. But for cases in which you lack perfect
knowledge of the inputs or for which it’s simply too computationally expensive to cal‐
culate the perfect watermark, you might instead choose to utilize a heuristic for defin‐
ing your watermark. The point I want to make here is that the given watermark
algorithm in use is independent from the pipeline itself. We’re not going to discuss in
detail what it means to implement a watermark here. For now, to help drive home
this idea that a given input set can have different watermarks applied to it, let’s take a
look at our pipeline in Example 2-6 when executed on the same dataset but using two
distinct watermark implementations (Figure 2-10): on the left, a perfect watermark;
on the right, a heuristic watermark.

In both cases, windows are materialized as the watermark passes the end of the win‐
dow. The perfect watermark, as you might expect, perfectly captures the event-time
completeness of the pipeline as time progresses. In contrast, the specific algorithm
used for the heuristic watermark on the right fails to take the value of 9 into account,5

which drastically changes the shape of the materialized outputs, both in terms of out‐
put latency and correctness (as seen by the incorrect answer of 5 that’s provided for
the [12:00, 12:02) window).

The big difference between the watermark triggers from Figure 2-9 and the repeated
update triggers we saw in Figures 2-5 through 2-7 is that the watermarks give us a way
to reason about the completeness of our input. Until the system materializes an output
for a given window, we know that the system does not yet believe the inputs to be
complete. This is especially important for use cases in which you want to reason
about a lack of data in the input, or missing data.
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Figure 2-10. Windowed summation on a streaming engine with perfect (left) and heuris‐
tic (right) watermarks
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A great example of a missing-data use case is outer joins. Without a notion of com‐
pleteness like watermarks, how do you know when to give up and emit a partial join
rather than continue to wait for that join to complete? You don’t. And basing that
decision on a processing-time delay, which is the common approach in streaming
systems that lack true watermark support, is not a safe way to go, because of the vari‐
able nature of event-time skew we spoke about in Chapter 1: as long as skew remains
smaller than the chosen processing-time delay, your missing-data results will be cor‐
rect, but any time skew grows beyond that delay, they will suddenly become incorrect.
From this perspective, event-time watermarks are a critical piece of the puzzle for
many real-world streaming use cases which must reason about a lack of data in the
input, such as outer joins, anomaly detection, and so on.

Now, with that said, these watermark examples also highlight two shortcomings of
watermarks (and any other notion of completeness), specifically that they can be one
of the following:

Too slow
When a watermark of any type is correctly delayed due to known unprocessed
data (e.g., slowly growing input logs due to network bandwidth constraints), that
translates directly into delays in output if advancement of the watermark is the
only thing you depend on for stimulating results.

This is most obvious in the left diagram of Figure 2-10, for which the late arriv‐
ing 9 holds back the watermark for all the subsequent windows, even though the
input data for those windows become complete earlier. This is particularly appa‐
rent for the second window, [12:02, 12:04), for which it takes nearly seven
minutes from the time the first value in the window occurs until we see any
results for the window whatsoever. The heuristic watermark in this example
doesn’t suffer the same issue quite so badly (five minutes until output), but don’t
take that to mean heuristic watermarks never suffer from watermark lag; that’s
really just a consequence of the record I chose to omit from the heuristic water‐
mark in this specific example.

The important point here is the following: Although watermarks provide a very
useful notion of completeness, depending upon completeness for producing out‐
put is often not ideal from a latency perspective. Imagine a dashboard that con‐
tains valuable metrics, windowed by hour or day. It’s unlikely you’d want to wait a
full hour or day to begin seeing results for the current window; that’s one of the
pain points of using classic batch systems to power such systems. Instead, it
would be much nicer to see the results for those windows refine over time as the
inputs evolve and eventually become complete.

Too fast
When a heuristic watermark is incorrectly advanced earlier than it should be, it’s
possible for data with event times before the watermark to arrive some time later,
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6 Which isn’t to say there aren’t use cases that care primarily about correctness and not so much about latency;
in those cases, using an accurate watermark as the sole driver of output from a pipeline is a reasonable
approach.

creating late data. This is what happened in the example on the right: the water‐
mark advanced past the end of the first window before all the input data for that
window had been observed, resulting in an incorrect output value of 5 instead of
14. This shortcoming is strictly a problem with heuristic watermarks; their heu‐
ristic nature implies they will sometimes be wrong. As a result, relying on them
alone for determining when to materialize output is insufficient if you care about
correctness.

In Chapter 1, I made some rather emphatic statements about notions of completeness
being insufficient for most use cases requiring robust out-of-order processing of
unbounded data streams. These two shortcomings—watermarks being too slow or
too fast—are the foundations for those arguments. You simply cannot get both low
latency and correctness out of a system that relies solely on notions of completeness.6

So, for cases for which you do want the best of both worlds, what’s a person to do?
Well, if repeated update triggers provide low-latency updates but no way to reason
about completeness, and watermarks provide a notion of completeness but variable
and possible high latency, why not combine their powers together?

When: Early/On-Time/Late Triggers FTW!
We’ve now looked at the two main types of triggers: repeated update triggers and
completeness/watermark triggers. In many case, neither of them alone is sufficient,
but the combination of them together is. Beam recognizes this fact by providing an
extension of the standard watermark trigger that also supports repeated update trig‐
gering on either side of the watermark. This is known as the early/on-time/late trig‐
ger because it partitions the panes that are materialized by the compound trigger into
three categories:

• Zero or more early panes, which are the result of a repeated update trigger that
periodically fires up until the watermark passes the end of the window. The panes
generated by these firings contain speculative results, but allow us to observe the
evolution of the window over time as new input data arrive. This compensates
for the shortcoming of watermarks sometimes being too slow.

• A single on-time pane, which is the result of the completeness/watermark trigger 
firing after the watermark passes the end of the window. This firing is special
because it provides an assertion that the system now believes the input for this
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7 And, as we know from before, this assertion is either guaranteed, in the case of a perfect watermark being
used, or an educated guess, in the case of a heuristic watermark.

window to be complete.7 This means that it is now safe to reason about missing
data; for example, to emit a partial join when performing an outer join.

• Zero or more late panes, which are the result of another (possibly different)
repeated update trigger that periodically fires any time late data arrive after the
watermark has passed the end of the window. In the case of a perfect watermark,
there will always be zero late panes. But in the case of a heuristic watermark, any
data the watermark failed to properly account for will result in a late firing. This
compensates for the shortcoming of watermarks being too fast.

Let’s see how this looks in action. We’ll update our pipeline to use a periodic
processing-time trigger with an aligned delay of one minute for the early firings, and
a per-record trigger for the late firings. That way, the early firings will give us some
amount of batching for high-volume windows (thanks to the fact that the trigger will
fire only once per minute, regardless of the throughput into the window), but we
won’t introduce unnecessary latency for the late firings, which are hopefully some‐
what rare if we’re using a reasonably accurate heuristic watermark. In Beam, that
looks Example 2-7 (Figure 2-11 shows the results).

Example 2-7. Early, on-time, and late firings via the early/on-time/late API

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(AfterWatermark()
        .withEarlyFirings(AlignedDelay(ONE_MINUTE))
        .withLateFirings(AfterCount(1))))
  .apply(Sum.integersPerKey());
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Figure 2-11. Windowed summation on a streaming engine with early, on-time, and late
firings

50 | Chapter 2: The What, Where, When, and How of Data Processing

http://streamingbook.net/fig/2-11
http://streamingbook.net/fig/2-11


This version has two clear improvements over Figure 2-9:

• For the “watermarks too slow” case in the second window, [12:02, 12:04): we now
provide periodic early updates once per minute. The difference is most stark in
the perfect watermark case, for which time-to-first-output is reduced from
almost seven minutes down to three and a half; but it’s also clearly improved in
the heuristic case, as well. Both versions now provide steady refinements over
time (panes with values 7, 10, then 18), with relatively minimal latency between
the input becoming complete and materialization of the final output pane for the
window.

• For the “heuristic watermarks too fast” case in the first window, [12:00, 12:02):
when the value of 9 shows up late, we immediately incorporate it into a new, cor‐
rected pane with value of 14.

One interesting side effect of these new triggers is that they effectively normalize the
output pattern between the perfect and heuristic watermark versions. Whereas the
two versions in Figure 2-10 were starkly different, the two versions here look quite
similar. They also look much more similar to the various repeated update version
from Figures 2-6 through 2-8, with one important difference: thanks to the use of the
watermark trigger, we can also reason about input completeness in the results we
generate with the early/on-time/late trigger. This allows us to better handle use cases
that care about missing data, like outer joins, anomaly detection, and so on.

The biggest remaining difference between the perfect and heuristic early/on-time/late
versions at this point is window lifetime bounds. In the perfect watermark case, we
know we’ll never see any more data for a window after the watermark has passed the
end of it, hence we can drop all of our state for the window at that time. In the heuris‐
tic watermark case, we still need to hold on to the state for a window for some
amount of time to account for late data. But as of yet, our system doesn’t have any
good way of knowing just how long state needs to be kept around for each window.
That’s where allowed lateness comes in.

When: Allowed Lateness (i.e., Garbage Collection)
Before moving on to our last question (“How do refinements of results relate?”), I’d
like to touch on a practical necessity within long-lived, out-of-order stream process‐
ing systems: garbage collection. In the heuristic watermarks example in Figure 2-11,
the persistent state for each window lingers around for the entire lifetime of the
example; this is necessary to allow us to appropriately deal with late data when/if they
arrive. But while it would be great to be able to keep around all of our persistent state
until the end of time, in reality, when dealing with an unbounded data source, it’s
often not practical to keep state (including metadata) for a given window indefinitely;
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we’ll eventually run out of disk space (or at the very least tire of paying for it, as the
value for older data diminishes over time).

As a result, any real-world out-of-order processing system needs to provide some way
to bound the lifetimes of the windows it’s processing. A clean and concise way of
doing this is by defining a horizon on the allowed lateness within the system; that is,
placing a bound on how late any given record may be (relative to the watermark) for
the system to bother processing it; any data that arrives after this horizon are simply
dropped. After you’ve bounded how late individual data may be, you’ve also estab‐
lished precisely how long the state for windows must be kept around: until the water‐
mark exceeds the lateness horizon for the end of the window. But in addition, you’ve
also given the system the liberty to immediately drop any data later than the horizon
as soon as they’re observed, which means the system doesn’t waste resources process‐
ing data that no one cares about.

Measuring Lateness
It might seem a little odd to be specifying a horizon for handling late data using the
very metric that resulted in the late data in the first place (i.e., the heuristic water‐
mark). And in some sense it is. But of the options available, it’s arguably the best. The
only other practical option would be to specify the horizon in processing time (e.g.,
keep windows around for 10 minutes of processing time after the watermark passes
the end of the window), but using processing time would leave the garbage collection
policy vulnerable to issues within the pipeline itself (e.g., workers crashing, causing
the pipeline to stall for a few minutes), which could lead to windows that didn’t
actually have a chance to handle late data that they otherwise should have. By specify‐
ing the horizon in the event-time domain, garbage collection is directly tied to the
actual progress of the pipeline, which decreases the likelihood that a window will miss
its opportunity to handle late data appropriately.

Note however, that not all watermarks are created equal. When we speak of water‐
marks in this book, we generally refer to low watermarks, which pessimistically
attempt to capture the event time of the oldest unprocessed record the system is aware
of. The nice thing about dealing with lateness via low watermarks is that they are
resilient to changes in event-time skew; no matter how large the skew in a pipeline
may grow, the low watermark will always track the oldest outstanding event known to
the system, providing the best guarantee of correctness possible.

In contrast, some systems may use the term “watermark” to mean other things. For
example, watermarks in Spark Structured Streaming are high watermarks, which opti‐
mistically track the event time of the newest record the system is aware of. When deal‐
ing with lateness, the system is free to garbage collect any window older than the high
watermark adjusted by some user-specified lateness threshold. In other words, the
system allows you to specify the maximum amount of event-time skew you expect to
see in your pipeline, and then throws away any data outside of that skew window.
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This can work well if skew within your pipeline remains within some constant delta,
but is more prone to incorrectly discarding data than low watermarking schemes.

Because the interaction between allowed lateness and the watermark is a little subtle,
it’s worth looking at an example. Let’s take the heuristic watermark pipeline from
Example 2-7/Figure 2-11 and add in Example 2-8 a lateness horizon of one minute
(note that this particular horizon has been chosen strictly because it fits nicely into
the diagram; for real-world use cases, a larger horizon would likely be much more
practical):

Example 2-8. Early/on-time/late firings with allowed lateness

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AfterCount(1)))
               .withAllowedLateness(ONE_MINUTE))
 .apply(Sum.integersPerKey());

The execution of this pipeline would look something like Figure 2-12, in which I’ve
added the following features to highlight the effects of allowed lateness:

• The thick black line denoting the current position in processing time is now
annotated with ticks indicating the lateness horizon (in event time) for all active
windows.

• When the watermark passes the lateness horizon for a window, that window is
closed, which means that all state for the window is discarded. I leave around a
dotted rectangle showing the extent of time (in both domains) that the window
covered when it was closed, with a little tail extending to the right to denote the
lateness horizon for the window (for contrasting against the watermark).

• For this diagram only, I’ve added an additional late datum for the first window
with value 6. The 6 is late, but still within the allowed lateness horizon and thus is
incorporated into an updated result with value 11. The 9, however, arrives
beyond the lateness horizon, so it is simply dropped.
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Figure 2-12. Allowed lateness with early/on-time/late firings

Two final side notes about lateness horizons:

• To be absolutely clear, if you happen to be consuming data from sources for
which perfect watermarks are available, there’s no need to deal with late data, and
an allowed lateness horizon of zero seconds will be optimal. This is what we saw
in the perfect watermark portion of Figure 2-10.

• One noteworthy exception to the rule of needing to specify lateness horizons,
even when heuristic watermarks are in use, would be something like computing
global aggregates over all time for a tractably finite number of keys (e.g., comput‐
ing the total number of visits to your site over all time, grouped by web browser
family). In this case, the number of active windows in the system is bounded by
the limited keyspace in use. As long as the number of keys remains manageably
low, there’s no need to worry about limiting the lifetime of windows via allowed
lateness.

Practicality sated, let’s move on to our fourth and final question.

How: Accumulation
When triggers are used to produce multiple panes for a single window over time, we
find ourselves confronted with the last question: “How do refinements of results
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8 You might note that there should logically be a fourth mode: discarding and retracting. That mode isn’t terri‐
bly useful in most cases, so I don’t discuss it further here.

9 In retrospect, it probably would have been clearer to choose a different set of names that are more oriented
toward the observed nature of data in the materialized stream (e.g., “output modes”) rather than names
describing the state management semantics that yield those data. Perhaps: discarding mode → delta mode,
accumulating mode → value mode, accumulating and retracting mode → value and retraction mode? How‐
ever, the discarding/accumulating/accumulating and retracting names are enshrined in the 1.x and 2.x line‐
ages of the Beam Model, so I don’t want to introduce potential confusion in the book by deviating. Also, it’s
very likely accumulating modes will blend into the background more with Beam 3.0 and the introduction of
sink triggers; more on this when we discuss SQL later in this book.

relate?” In the examples we’ve seen so far, each successive pane is built upon the one
immediately preceding it. However, there are actually three8 different modes of accu‐
mulation:9

Discarding
Every time a pane is materialized, any stored state is discarded. This means that
each successive pane is independent from any that came before. Discarding mode
is useful when the downstream consumer is performing some sort of accumula‐
tion itself; for example, when sending integers into a system that expects to
receive deltas that it will sum together to produce a final count.

Accumulating
As in Figures 2-6 through 2-11, every time a pane is materialized, any stored state
is retained, and future inputs are accumulated into the existing state. This means
that each successive pane builds upon the previous panes. Accumulating mode is
useful when later results can simply overwrite previous results, such as when
storing output in a key/value store like HBase or Bigtable.

Accumulating and retracting
This is like accumulating mode, but when producing a new pane, it also produces
independent retractions for the previous pane(s). Retractions (combined with the
new accumulated result) are essentially an explicit way of saying “I previously
told you the result was X, but I was wrong. Get rid of the X I told you last time,
and replace it with Y.” There are two cases for which retractions are particularly
helpful:

• When consumers downstream are regrouping data by a different dimension,
it’s entirely possible the new value may end up keyed differently from the
previous value and thus end up in a different group. In that case, the new
value can’t just overwrite the old value; you instead need the retraction to
remove the old value

• When dynamic windows (e.g., sessions, which we look at more closely in a
few moments) are in use, the new value might be replacing more than one
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previous window, due to window merging. In this case, it can be difficult to
determine from the new window alone which old windows are being
replaced. Having explicit retractions for the old windows makes the task
straightforward.

The different semantics for each group are somewhat clearer when seen side-by-side.
Consider the two panes for the second window (the one with event-time range
[12:06, 12:08)) in Figure 2-11 (the one with early/on-time/late triggers). Table 2-1
shows what the values for each pane would look like across the three accumulation
modes (with accumulating mode being the specific mode used in Figure 2-11 itself).

Table 2-1. Comparing accumulation modes using the second window from Figure 2-11
 Discarding Accumulating Accumulating & Retracting

Pane 1: inputs=[3] 3 3 3

Pane 2: inputs=[8, 1] 9 12 12, –3

Value of final normal pane 9 12 12

Sum of all panes 12 15 12

Let’s take a closer look at what’s happening:

Discarding
Each pane incorporates only the values that arrived during that specific pane. As
such, the final value observed does not fully capture the total sum. However, if
you were to sum all of the independent panes themselves, you would arrive at a
correct answer of 12. This is why discarding mode is useful when the down‐
stream consumer itself is performing some sort of aggregation on the material‐
ized panes.

Accumulating
As in Figure 2-11, each pane incorporates the values that arrived during that spe‐
cific pane, plus all of the values from previous panes. As such, the final value
observed correctly captures the total sum of 12. If you were to sum up the indi‐
vidual panes themselves, however, you’d effectively be double-counting the inputs
from pane 1, giving you an incorrect total sum of 15. This is why accumulating
mode is most useful when you can simply overwrite previous values with new
values: the new value already incorporates all of the data seen thus far.

Accumulating and retracting
Each pane includes both a new accumulating mode value as well as a retraction
of the previous pane’s value. As such, both the last value observed (excluding
retractions) as well as the total sum of all materialized panes (including retrac‐
tions) provide you with the correct answer of 12. This is why retractions are so
powerful.
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Example 2-9 demonstrates discarding mode in action, illustrating the changes we
would make to Example 2-7:

Example 2-9. Discarding mode version of early/on-time/late firings

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AtCount(1)))
               .discardingFiredPanes())
  .apply(Sum.integersPerKey());

Running again on a streaming engine with a heuristic watermark would produce out‐
put like that shown in Figure 2-13.

Figure 2-13. Discarding mode version of early/on-time/late firings on a streaming engine

Even though the overall shape of the output is similar to the accumulating mode ver‐
sion from Figure 2-11, note how none of the panes in this discarding version overlap.
As a result, each output is independent from the others.

If we want to look at retractions in action, the change would be similar, as shown in
Example 2-10. Figure 2-14 depicts the results.
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Example 2-10. Accumulating and retracting mode version of early/on-time/late firings

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AtCount(1)))
               .accumulatingAndRetractingFiredPanes())
  .apply(Sum.integersPerKey());

Figure 2-14. Accumulating and retracting mode version of early/late firings on a stream‐
ing engine

Because the panes for each window all overlap, it’s a little tricky to see the retractions
clearly. The retractions are indicated in red, which combines with the overlapping
blue panes to yield a slightly purplish color. I’ve also horizontally shifted the values of
the two outputs within a given pane slightly (and separated them with a comma) to
make them easier to differentiate.

Figure 2-15 combines the final frames of Figures 2-9, 2-11 (heuristic only), and 2-14
side-by-side, providing a nice visual contrast of the three modes.
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Figure 2-15. Side-by-side comparison of accumulation modes

As you can imagine, the modes in the order presented (discarding, accumulating,
accumulating and retracting) are each successively more expensive in terms of stor‐
age and computation costs. To that end, choice of accumulation mode provides yet
another dimension for making trade-offs along the axes of correctness, latency, and
cost.

Summary
With this chapter complete, you now understand the basics of robust stream process‐
ing and are ready to go forth into the world and do amazing things. Of course, there
are eight more chapters anxiously waiting for your attention, so hopefully you won’t
go forth like right now, this very minute. But regardless, let’s recap what we’ve just
covered, lest you forget any of it in your haste to amble forward. First, the major con‐
cepts we touched upon:

Event time versus processing time
The all-important distinction between when events occurred and when they are
observed by your data processing system.

Windowing
The commonly utilized approach to managing unbounded data by slicing it
along temporal boundaries (in either processing time or event time, though we
narrow the definition of windowing in the Beam Model to mean only within
event time).

Triggers
The declarative mechanism for specifying precisely when materialization of out‐
put makes sense for your particular use case.

Watermarks
The powerful notion of progress in event time that provides a means of reason‐
ing about completeness (and thus missing data) in an out-of-order processing
system operating on unbounded data.
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Accumulation
The relationship between refinements of results for a single window for cases in
which it’s materialized multiple times as it evolves.

Second, the four questions we used to frame our exploration:

• What results are calculated? = transformations.
• Where in event time are results calculated? = windowing.
• When in processing time are results materialized? = triggers plus watermarks.
• How do refinements of results relate? = accumulation.

Third, to drive home the flexibility afforded by this model of stream processing
(because in the end, that’s really what this is all about: balancing competing tensions
like correctness, latency, and cost), a recap of the major variations in output we were
able to achieve over the same dataset with only a minimal amount of code change:

 

Integer summation
Example 2-1 / Figure 2-3

Integer summation
Fixed windows batch

Example 2-2 / Figure 2-5

Integer summation
Fixed windows streaming

Repeated per-record trigger
Example 2-3 / Figure 2-6

 

Integer summation
Fixed windows streaming

Repeated aligned-delay trigger
Example 2-4 / Figure 2-7

Integer summation
Fixed windows streaming

Repeated unaligned-delay trigger
Example 2-5 / Figure 2-8

Integer summation
Fixed windows streaming

Heuristic watermark trigger
Example 2-6 / Figure 2-10
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Integer summation
Fixed windows streaming
Early/on-time/late trigger

Discarding
Example 2-9 / Figure 2-13

Integer summation
Fixed windows streaming
Early/on-time/late trigger

Accumulating
Example 2-7 / Figure 2-11

Integer summation
Fixed windows streaming
Early/on-time/late trigger

Accumulating and Retracting
Example 2-10 / Figure 2-14

All that said, at this point, we’ve really looked at only one type of windowing: fixed
windowing in event time. As we know, there are a number of dimensions to window‐
ing, and I’d like to touch upon at least two more of those before we call it day with the
Beam Model. First, however, we’re going to take a slight detour to dive deeper into the
world of watermarks, as this knowledge will help frame future discussions (and be
fascinating in and of itself). Enter Slava, stage right...
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trout produces thousands of eggs. It takes 3–4 years for a brown trout to reach
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