

Five Ways Database Modernization Simplifies Your Data Life

Mike Boyarski, Senior Director Product Marketing

- Quick Database Landscape Roundup
- Five (Customer) Ways to a Simpler Data Life
- An Intro to MemSQL

"Companies with data-driven environments have up to 50% higher market value than other businesses."

Data demands

More people want data access, impacting database concurrency and scale

Analytic performance

Faster, more frequent intra-day insights

Rising data management costs
Costly upgrades and maintenance
with existing technology

Database Landscape

Figure 1. Hype Cycle for Data Management, 2018

Figure 1. Hype Cycle for Data Management, 2018

Source: Gartner (July 2018)

An Attempt to Simplify

Transactions/Writes? Operational

Queries/Reads? Analytical

Both transactions and queries? HTAP (next slide)

An Intro to HTAP

Hybrid Transaction/Analytical Processing

"HTAP architectures remove the latency between when a piece of data is generated and when it is ready for analytics"

"Delivering Digital Business Value Using Practical Hybrid Transactional/Analytical Processing", Analysts: Adam M. Ronthal, Roxane Edjlali

An Intro to HTAP

Hybrid Transaction/Analytical Processing

"HTAP architectures remove the latency between when a piece of data is generated and when it is ready for analytics"

"The traditional batch-oriented cycle of business intelligence insight is giving way to new deployment architectures delivering real-time access to data and the expected insights that it will provide."

An Intro to HTAP

Hybrid Transaction/Analytical Processing

"HTAP architectures remove the latency between when a piece of data is generated and when it is ready for analytics"

"The traditional batch-oriented cycle of business intelligence insight is giving way to new deployment architectures delivering real-time access to data and the expected insights that it will provide."

"To support this demand, the **convergence of analytic and operational** platforms is becoming more common."

"Delivering Digital Business Value Using Practical Hybrid Transactional/Analytical Processing", Analysts: Adam M. Ronthal, Roxane Edjlali

Workload Database Type

Transactions? Operational

Queries? Analytical

Both transactions and queries? HTAP (will explain next slide)

Lots of transactions per second? In-Memory Boosted 10,000+ -> Millions Operational

Fast reads + ad-hoc? In-Memory boosted
Milliseconds on 100Ms/Bs of rows +Columnstore Analytical

Data Science/ML Analytical or Data Lake

Faster Event to Insight

Growth in Concurrency

Cost Effective Performance

Accelerate Big Data

Deployment Flexibility

Event to Insight Delays

Event to Insight Delays

Common Challenges

- Protect performance limiting ad-hoc aggregates
- Load data during "non-peak" operations
- Writes slow down reads

Faster Event to Insight Example

Situation:

Oracle Financials
database could only
support once/day
reporting resulting in
fraudulent and
duplicate orders

Industry: Energy

Faster Event to Insight Example

Situation:

Oracle Financials
database could only
support once/day
reporting resulting in
fraudulent and
duplicate orders

Industry: Energy

Solution:

Real-time synchronization from Oracle to MemSQL with change data capture enabling continuous reporting

Result: Cost savings

Previous Architecture

Modernized Architecture

DB Modernization for Faster Event to Insight

- Lock-free ingestion
- Distributed for faster parallel loading
- Scalable durability for reliability and accuracy
- Relational SQL for BI tool compatibility

Faster Event to Insight

Growth in Concurrency

Cost Effective Performance

Accelerate Big Data

Deployment Flexibility

"Wait in Line" Analytics

Common Challenges

- Under-powered database can't support data and user growth
- Too many non-standard ad-hoc queries
- Transactions impact queries

High Query Concurrency Example

Situation:

Operational dashboards couldn't support demand of roughly 250k queries across 1,000+ users

Customer: UBER

High Query Concurrency Example

Situation:

Operational dashboards couldn't support demand of roughly 250k queries across 1,000+ users

Customer: UBER

Solution:

MemSQL delivers subsecond query response for 1,000s of users while supporting continuous writes

Result: Real-Time

Dashboards

Architecture

DB Modernization for Concurrency Growth

- Distributed architecture simplifies scale demands
- Query compilation for fast continuous queries
- In-memory optimized tables for continuous ingestion

Faster Event to Insight

Growth in Concurrency

Cost Effective Performance

Accelerate Big Data

Deployment Flexibility

Costly Performance

Common Challenges

- Specialized HW required for growing data
- Costly DB options and accelerators
- Professional service tuning

Costly Performance Example

Situation:

Degrading query and ingestion performance couldn't deliver daily billing requirement resulting in lost revenue

Industry: High Tech

Costly Performance Example

Situation:

Degrading query and ingestion performance couldn't deliver daily billing requirement resulting in lost revenue

Industry: High Tech

Solution:

Accelerated ingestion from **56k/s** to **6M/s**

100x faster queries

1/3 the cost of incumbent solution

Result: Added revenue

Before Architecture

Source: Akamai

After Architecture

Source: Akamai

DB Modernization for Cost Efficient Performance

- Optimized for industry standard hardware
 - Query vectorization CPU acceleration
 - Scale-out architecture
- Columnar data compression 5-10x
- Memory optimization at no additional license cost

Faster Event to Insight

Growth in Concurrency

Cost Effective Performance

Accelerated Big Data

Deployment Flexibility

Accelerate Big Data

Common Challenges

- Slow queries
- Existing BI tools not compatible
- Flexible data structure hard to understand/use

Accelerate Big Data Example

Situation:

Queries taking hours to days to complete limiting use of analytics for decisions

Customer: Pandora

Accelerate Big Data Example

Situation:

Queries taking hours to days to complete limiting use of analytics for decisions

Customer: Pandora

Solution:

MemSQL delivers subsecond queries on 100s of billions of rows

Result: Frequent use of

analytics

I'm a software engineer at Pandora Media Aug 13 · 18 min read

Follow

Using MemSQL to Query Hundreds of Billions of Rows in a Dashboard

DB Modernization for Faster Big Data

- Lock-free architecture for fast ingestion
- Disk-based compute for cost effective storage
- Connectivity for bulk and stream loading (ie. Kafka, Spark, HDFS, S3, Azure Blob)
- Columnar table format eliminates pre-aggregations and background queries

Faster Event to Insight

Growth in Concurrency

Cost Effective Performance

Accelerated Big Data

Deployment Flexibility

Deployment Inflexibility

Common Challenges

- Database runs on one cloud
- Cloud and On-Premises product versions are different

Deployment Flexibility Example

Situation:

Cloud application deployed on Azure and Equinix for customer security requirements, requiring multi-cloud database

Customer: Kollective

Deployment Flexibility Example

Situation:

Cloud application deployed on Azure and Equinix for customer security requirements, requiring multi-cloud database

Customer: Kollective

Solution:

MemSQL used on Azure and Equinix, achieving breakthrough performance for real-time dashboards

Result: Improved

customer experience

What is MemSQL

The Modern Database for Today's Performance

Fast Loading

Stream data
On-the-fly transformation
Multiple sources

Low Latency Queries

Scalable ANSI SQL Petabyte scale Columnar compression

Scalable User Access

Scale-out for performance Converged transactions and analytics Multi-threaded processing

MemSQL: The No-Limits Database

High Speed Ingest

Fast bulk load or stream data with real-time pipelines

Memory Optimized Tables

Ultra-low latency for transactions and analytics

Disk Optimized Tables

Petabyte scale analytics with compression and performance

Ecosystem

Fast Data Ingestion

- Stream ingestion
- Fast parallel bulk loading
- Built-in Create Pipeline
- Transactional Consistency
- Exactly-Once Semantics
- Native integrations with Kafka, AWS S3, Azure Blob, HDFS

Summary

DATABASE Sentiment Analys

Recent Batches

Timestamp	
10:52:14	
10:52:10	
10:52:08	
10:52:05	
10:52:02	
10:51:58	

10:51:55

10:51:51

Instant Insights

- Scalable ANSI SQL
- Full ACID capabilities
- Support for JSON, Geospatial, and Full-Text Search
- Fast Query Vectorization and Compilation
- Extensibility with Stored Procedures, UDFs, UDAs

```
FROM trips t, neighborhoods n
WHERE
    status = "completed" AND
    n.id IN (
        SELECT id FROM neighborhoods
    ) AND
             AVG TRIP - 5:45 min
```


Thank You

