


The Database 
of Now
All Data. One Platform. 

Try it FREE today at singlestore.com

Speed

SingleStore delivers the fastest event-to-insight 
performance with our breakthrough lock-free architecture 

Scale

SingleStore offers unbeatable scale, delivering consistent 

performance under high ingest and concurrency

SQL

SingleStore plugs right into standard SQL, BI, and ETL 

products as well as modern tools like Kafka and Spark

http://memsql.com


Conor Doherty, Steven Camiña, 
Kevin White, and Gary Orenstein

The Path to Predictive
Analytics and 

Machine Learning

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing



978-1-491-96966-3

[LSI]

The Path to Predictive Analytics and Machine Learning
by Conor Doherty, Steven Camiña, Kevin White, and Gary Orenstein

Copyright © 2016 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Tim McGovern and
Debbie Hardin
Production Editor: Colleen Lobner
Copyeditor: Octal Publishing, Inc.

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

September 2016:  First Edition

Revision History for the First Edition
2016-08-25: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Path to Pre‐
dictive Analytics and Machine Learning, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://safaribooksonline.com


Table of Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii

1. Building Real-Time Data Pipelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Modern Technologies for Going Real-Time                                    2

2. Processing Transactions and Analytics in a Single Database. . . . . . . .  7
Hybrid Data Processing Requirements                                             8
Benefits of a Hybrid Data System                                                      9
Data Persistence and Availability                                                    10

3. Dawn of the Real-Time Dashboard. . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Choosing a BI Dashboard                                                                17
Real-Time Dashboard Examples                                                     18
Building Custom Real-Time Dashboards                                      20

4. Redeploying Batch Models in Real Time. . . . . . . . . . . . . . . . . . . . . . .  23
Batch Approaches to Machine Learning                                        23
Moving to Real Time: A Race Against Time                                  25
Manufacturing Example                                                                   25
Original Batch Approach                                                                  26
Real-Time Approach                                                                         27
Technical Integration and Real-Time Scoring                               27
Immediate Benefits from Batch to Real-Time Learning              28

5. Applied Introduction to Machine Learning. . . . . . . . . . . . . . . . . . . . .  29
Supervised Learning                                                                          30
Unsupervised Learning                                                                     35

v



6. Real-Time Machine Learning Applications. . . . . . . . . . . . . . . . . . . . . .  39
Real-Time Applications of Supervised Learning 39
Unsupervised Learning 42

7. Preparing Data Pipelines for Predictive Analytics and
Machine Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
Real-Time Feature Extraction 46
Minimizing Data Movement 47
Dimensionality Reduction 48

8. Predictive Analytics in Use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
Renewable Energy and Industrial IoT 51
PowerStream: A Showcase Application of Predictive

Analytics for Renewable Energy and IIoT 52
SQL Pushdown Details 58
PowerStream at the Command Line 58

9. Techniques for Predictive Analytics in Production. . . . . . . . . . . . . . .  63
Real-Time Event Processing 63
Real-Time Data Transformations 67
Real-Time Decision Making 68

10. From Machine Learning to Artificial Intelligence. . . . . . . . . . . . . . . .  71
Statistics at the Start 71
The “Sample Data” Explosion 72
An Iterative Machine Process 72
Digging into Deep Learning 73
The Move to Artificial Intelligence 76

A. Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

vi | Table of Contents



Introduction

An Anthropological Perspective
If you believe that as a species, communication advanced our evolu‐
tion and position, let us take a quick look from cave paintings, 
to scrolls, to the printing press, to the modern day data storage 
industry.

Marked by the invention of disk drives in the 1950s, data storage 
advanced information sharing broadly. We could now record, copy, 
and share bits of information digitally. From there emerged superior 
CPUs, more powerful networks, the Internet, and a dizzying array of 
connected devices.

Today, every piece of digital technology is constantly sharing, pro‐
cessing, analyzing, discovering, and propagating an endless stream 
of zeros and ones. This web of devices tells us more about ourselves 
and each other than ever before.

Of course, to meet these information sharing developments, we 
need tools across the board to help. Faster devices, faster networks, 
faster central processing, and software to help us discover and har‐
ness new opportunities.

Often, it will be fine to wait an hour, a day, even sometimes a week, 
for the information that enriches our digital lives. But more fre‐
quently, it’s becoming imperative to operate in the now.

In late 2014, we saw emerging interest and adoption of multiple in-
memory, distributed architectures to build real-time data pipelines. 
In particular, the adoption of a message queue like Kafka, transfor‐
mation engines like Spark, and persistent databases like 
SingleStore

vii



opened up a new world of capabilities for fast business to under‐
stand real-time data and adapt instantly.

This pattern led us to document the trend of real-time analytics in
our first book, Building Real-Time Data Pipelines: Unifying Applica‐
tions and Analytics with In-Memory Architectures (O’Reilly, 2015).
There, we covered the emergence of in-memory architectures, the
playbook for building real-time pipelines, and best practices for
deployment.

Since then, the world’s fastest companies have pushed these archi‐
tectures even further with machine learning and predictive analyt‐
ics. In this book, we aim to share this next step of the real-time
analytics journey.

— Conor Doherty, Steven Camiña, Kevin White, and Gary Orenstein

viii | Introduction



CHAPTER 1

Building Real-Time Data Pipelines

Discussions of predictive analytics and machine learning often gloss
over the details of a difficult but crucial component of success in
business: implementation. The ability to use machine learning mod‐
els in production is what separates revenue generation and cost sav‐
ings from mere intellectual novelty. In addition to providing an
overview of the theoretical foundations of machine learning, this
book discusses pragmatic concerns related to building and deploy‐
ing scalable, production-ready machine learning applications. There
is a heavy focus on real-time uses cases including both operational
applications, for which a machine learning model is used to auto‐
mate a decision-making process, and interactive applications, for
which machine learning informs a decision made by a human.

Given the focus of this book on implementing and deploying
predictive analytics applications, it is important to establish context
around the technologies and architectures that will be used in pro‐
duction. In addition to the theoretical advantages and limitations of
particular techniques, business decision makers need an under‐
standing of the systems in which machine learning applications will
be deployed. The interactive tools used by data scientists to develop
models, including domain-specific languages like R, in general do
not suit low-latency production environments. Deploying models in
production forces businesses to consider factors like model training
latency, prediction (or “scoring”) latency, and whether particular
algorithms can be made to run in distributed data processing envi‐
ronments.

1



Before discussing particular machine learning techniques, the first
few chapters of this book will examine modern data processing
architectures and the leading technologies available for data process‐
ing, analysis, and visualization. These topics are discussed in greater
depth in a prior book (Building Real-Time Data Pipelines: Unifying
Applications and Analytics with In-Memory Architectures [O’Reilly,
2015]); however, the overview provided in the following chapters
offers sufficient background to understand the rest of the book.

Modern Technologies for Going Real-Time
To build real-time data pipelines, we need infrastructure and tech‐
nologies that accommodate ultrafast data capture and processing.
Real-time technologies share the following characteristics: 1) in-
memory data storage for high-speed ingest, 2) distributed architec‐
ture for horizontal scalability, and 3) they are queryable for real-
time, interactive data exploration. These characteristics are
illustrated in Figure 1-1.

Figure 1-1. Characteristics of real-time technologies

High-Throughput Messaging Systems
Many real-time data pipelines begin with capturing data at its source
and using a high-throughput messaging system to ensure that every
data point is recorded in its right place. Data can come from a wide
range of sources, including logging information, web events, sensor
data, financial market streams, and mobile applications. From there
it is written to file systems, object stores, and databases.

Apache Kafka is an example of a high-throughput, distributed mes‐
saging system and is widely used across many industries. According
to the Apache Kafka website, “Kafka is a distributed, partitioned,
replicated commit log service.” Kafka acts as a broker between pro‐
ducers (processes that publish their records to a topic) and consum‐
ers (processes that subscribe to one or more topics). Kafka can
handle terabytes of messages without performance impact. This
process is outlined in Figure 1-2.

2 | Chapter 1: Building Real-Time Data Pipelines



Figure 1-2. Kafka producers and consumers

Because of its distributed characteristics, Kafka is built to scale pro‐
ducers and consumers with ease by simply adding servers to the
cluster. Kafka’s effective use of memory, combined with a commit
log on disk, provides ideal performance for real-time pipelines and
durability in the event of server failure.

With our message queue in place, we can move to the next piece of
data pipelines: the transformation tier.

Data Transformation
The data transformation tier takes raw data, processes it, and out‐
puts the data in a format more conducive to analysis. Transformers
serve a number of purposes including data enrichment, filtering,
and aggregation.

Apache Spark is often used for data transformation (see Figure 1-3).
Like Kafka, Spark is a distributed, memory-optimized system that is
ideal for real-time use cases. Spark also includes a streaming library
and a set of programming interfaces to make data processing and
transformation easier.

Modern Technologies for Going Real-Time | 3



Figure 1-3. Spark data processing framework

When building real-time data pipelines, Spark can be used to extract
data from Kafka, filter down to a smaller dataset, run enrichment
operations, augment data, and then push that refined dataset to a
persistent datastore. Spark does not include a storage engine, which
is where an operational database comes into play, and is our next
step (see Figure 1-4).

Figure 1-4. High-throughput connectivity between an in-memory
database and Spark

Persistent Datastore
To analyze both real-time and historical data, it must be maintained
beyond the streaming and transformations layers of our pipeline,
and into a permanent datastore. Although unstructured systems like
Hadoop Distributed File System (HDFS) or Amazon S3 can be used
for historical data persistence, neither offer the performance
required for real-time analytics.

On the other hand, a memory-optimized database can provide per‐
sistence for real-time and historical data as well as the ability to
query both in a single system. By combining transactions and ana‐
lytics in a memory-optimized system, data can be rapidly ingested
from our transformation tier and held in a datastore. This allows

4 | Chapter 1: Building Real-Time Data Pipelines



applications to be built on top of an operational database that sup‐
plies the application with the most recent data available.

Moving from Data Silos to Real-Time Data Pipelines
In a world in which users expect tailored content, short load times,
and up-to-date information, building real-time applications at scale
on legacy data processing systems is not possible. This is because
traditional data architectures are siloed, using an Online Transac‐
tion Processing (OLTP)-optimized database for operational data
processing and a separate Online Analytical Processing (OLAP)-
optimized data warehouse for analytics.

The Enterprise Architecture Gap
In practice, OLTP and OLAP systems ingest data differently, and
transferring data from one to the other requires Extract, Transform,
and Load (ETL) functionality, as Figure 1-5 demonstrates.

Figure 1-5. Legacy data processing model

OLAP silo
OLAP-optimized data warehouses cannot handle one-off inserts
and updates. Instead, data must be organized and loaded all at once
—as a large batch—which results in an offline operation that runs
overnight or during off-hours. The tradeoff with this approach is
that streaming data cannot be queried by the analytical database
until a batch load runs. With such an architecture, standing up a
real-time application or enabling analyst to query your freshest
dataset cannot be achieved.

OLTP silo
On the other hand, an OLTP database typically can handle high-
throughput transactions, but is not able to simultaneously run ana‐
lytical queries. This is especially true for OLTP databases that use

Modern Technologies for Going Real-Time | 5



disk as a primary storage medium, because they cannot handle
mixed OLTP/OLAP workloads at scale.

The fundamental flaw in a batch processing system can be illustra‐
ted through an example of any real-time application. For instance, if
we take a digital advertising application that combines user
attributes and click history to serve optimized display ads before a
web page loads, it’s easy to spot where the siloed model breaks. As
long as data remains siloed in two systems, it will not be able to
meet Service-Level Agreements (SLAs) required for any real-time
application.

Real-Time Pipelines and Converged Processing
Businesses implement real-time data pipelines in many ways, and
each pipeline can look different depending on the type of data,
workload, and processing architecture. However, all real-time pipe‐
lines follow these fundamental principles:

• Data must be processed and transformed on-the-fly so that it is
immediately available for querying when it reaches a persistent
datastore

• An operational datastore must be able to run analytics with low
latency

• The system of record must be converged with the system of
insight

One common example of a real-time pipeline configuration can be
found using the technologies mentioned in the previous section—
Kafka to Spark to a memory-optimized database. In this pipeline,
Kafka is our message broker, and functions as a central location for
Spark to read data streams. Spark acts as a transformation layer to
process and enrich data into microbatches. Our memory-optimized
database serves as a persistent datastore that ingests enriched data
streams from Spark. Because data flows from one end of this pipe‐
line to the other in under a second, an application or an analyst can
query data upon its arrival.

6 | Chapter 1: Building Real-Time Data Pipelines



CHAPTER 2

Processing Transactions and
Analytics in a Single Database

Historically, businesses have separated operations from analytics
both conceptually and practically. Although every large company
likely employs one or more “operations analysts,” generally these
individuals produce reports and recommendations to be imple‐
mented by others, in future weeks and months, to optimize business
operations. For instance, an analyst at a shipping company might
detect trends correlating to departure time and total travel times.
The analyst might offer the recommendation that the business
should shift its delivery schedule forward by an hour to avoid traffic.
To borrow a term from computer science, this kind of analysis
occurs asynchronously relative to day-to-day operations. If the ana‐
lyst calls in sick one day before finishing her report, the trucks still
hit the road and the deliveries still happen at the normal time. What
happens in the warehouses and on the roads that day is not tied to
the outcome of any predictive model. It is not until someone reads
the analyst’s report and issues a company-wide memo that deliveries
are to start one hour earlier that the results of the analysis trickle
down to day-to-day operations.

Legacy data processing paradigms further entrench this separation
between operations and analytics. Historically, limitations in both
software and hardware necessitated the separation of transaction
processing (INSERTs, UPDATEs, and DELETEs) from analytical
data processing (queries that return some interpretable result
without changing the underlying data). As the rest of this chapter

7



will discuss, modern data processing frameworks take advantage of
distributed architectures and in-memory storage to enable the con‐
vergence of transactions and analytics.

To further motivate this discussion, envision a shipping network in
which the schedules and routes are determined programmatically
by using predictive models. The models might take weather and
traffic data and combine them with past shipping logs to predict the
time and route that will result in the most efficient delivery. In this
case, day-to-day operations are contingent on the results of analytic
predictive models. This kind of on-the-fly automated optimization
is not possible when transactions and analytics happen in separate
siloes.

Hybrid Data Processing Requirements
For a database management system to meet the requirements for
converged transactional and analytical processing, the following cri‐
teria must be met:

Memory optimized
Storing data in memory allows reads and writes to occur at real-
time speeds, which is especially valuable for concurrent transac‐
tional and analytical workloads. In-memory operation is also
necessary for converged data processing because no purely disk-
based system can deliver the input/output (I/O) required for
real-time operations.

Access to real-time and historical data
Converging OLTP and OLAP systems requires the ability to
compare real-time data to statistical models and aggregations of
historical data. To do so, our database must accommodate two
types of workloads: high-throughput operational transactions,
and fast analytical queries.

Compiled query execution plans
By eliminating disk I/O, queries execute so rapidly that dynamic
SQL interpretation can become a bottleneck. To tackle this,
some databases use a caching layer on top of their Relational
Database Management System (RDBMS). However, this leads
to cache invalidation issues that result in minimal, if any, perfor‐
mance benefit. Executing a query directly in memory is a better

8 | Chapter 2: Processing Transactions and Analytics in a Single Database



approach because it maintains query performance (see
Figure 2-1).

Figure 2-1. Compiled query execution plans

Multiversion concurrency control
Reaching the high-throughput necessary for a hybrid, real-time
engine can be achieved through lock-free data structures and
multiversion concurrency control (MVCC). MVCC enables
data to be accessed simultaneously, avoiding locking on both
reads and writes.

Fault tolerance and ACID compliance
Fault tolerance and Atomicity, Consistency, Isolation, Durability
(ACID) compliance are prerequisites for any converged data
system because datastores cannot lose data. A database should
support redundancy in the cluster and cross-datacenter replica‐
tion for disaster recovery to ensure that data is never lost.

With each of the aforementioned technology requirements in place,
transactions and analytics can be consolidated into a single system
built for real-time performance. Moving to a hybrid database archi‐
tecture opens doors to untapped insights and new business opportu‐
nities.

Benefits of a Hybrid Data System
For data-centric organizations, a single engine to process transac‐
tions and analytics results in new sources of revenue and a simpli‐
fied computing structure that reduces costs and administrative
overhead.

Benefits of a Hybrid Data System | 9



New Sources of Revenue
Achieving true “real-time” analytics is very different from incremen‐
tally faster response times. Analytics that capture the value of data
before it reaches a specified time threshold—often a fraction of a
second—and can have a huge impact on top-line revenue.

An example of this can be illustrated in the financial services sector.
Financial investors and analyst must be able to respond to market
volatility in an instant. Any delay is money out of their pockets.
Limitations with OLTP to OLAP batch processing do not allow
financial organizations to respond to fluctuating market conditions
as they happen. A single database approach provides more value to
investors every second because they can respond to market swings
in an instant.

Reducing Administrative and Development Overhead
By converging transactions and analytics, data no longer needs to
move from an operational database to a siloed data warehouse to
deliver insights. This gives data analysts and administrators more
time to concentrate efforts on business strategy, as ETL often takes
hours to days.

When speaking of in-memory computing, questions of data persis‐
tence and high availability always arise. The upcoming section dives
into the details of in-memory, distributed, relational database sys‐
tems and how they can be designed to guarantee data durability and
high availability.

Data Persistence and Availability
By definition an operational database must have the ability to store
information durably with resistance to unexpected machine failures.
More specifically, an operational database must do the following:

• Save all of its information to disk storage for durability
• Ensure that the data is highly available by maintaining a readily

accessible second copy of all data, and automatically fail-over
without downtime in case of server crashes

These steps are illustrated in Figure 2-2.

10 | Chapter 2: Processing Transactions and Analytics in a Single Database



Figure 2-2. In-memory database persistence and high availability

Data Durability
For data storage to be durable, it must survive any server failures.
After a failure, data should also be recoverable into a transactionally
consistent state without loss or corruption to data.

Any well-designed in-memory database will guarantee durability by
periodically flushing snapshots from the in-memory store into a
durable disk-based copy. Upon a server restart, an in-memory data‐
base should also maintain transaction logs and replay snapshot and
transaction logs.

This is illustrated through the following scenario:

Suppose that an application inserts a new record into a database.
The following events will occur as soon as a commit is issued:

1. The inserted record will be written to the datastore in-memory.
2. A log of the transaction will be stored in a transaction log buffer

in memory.
3. When the transaction log buffer is filled, its contents are flushed

to disk.
The size of the transaction log buffer is configurable, so if it is
set to 0, the transaction log will be flushed to disk after each
committed transaction.

4. Periodically, full snapshots of the database are taken and written
to disk.

Data Persistence and Availability | 11



The number of snapshots to keep on disk and the size of the
transaction log at which a snapshot is taken are configurable.
Reasonable defaults are typically set.

An ideal database engine will include numerous settings to control
data persistence, and will allow a user the flexibility to configure the
engine to support full persistence to disk or no durability at all.

Data Availability
For the most part, in a multimachine system, it’s acceptable for data
to be lost in one machine, as long as data is persisted elsewhere in
the system. Upon querying the data, it should still return a transac‐
tionally consistent result. This is where high availability enters the
equation. For data to be highly available, it must be queryable from a
system regardless of failures from some machines within a system.

This is better illustrated by using an example from a distributed sys‐
tem, in which any number of machines can fail. If failure occurs, the
following should happen:

1. The machine is marked as failed throughout the system.
2. A second copy of data in the failed machine, already existing in

another machine, is promoted to be the “master” copy of data.
3. The entire system fails over to the new “master” data copy,

removing any system reliance on data present in the failed sys‐
tem.

4. The system remains online (i.e., queryable) throughout the
machine failure and data failover times.

5. If the failed machine recovers, the machine is integrated back
into the system.

A distributed database system that guarantees high availability must
also have mechanisms for maintaining at least two copies of data at
all times. Distributed systems should also be robust, so that failures
of different components are mostly recoverable, and machines are
reintroduced efficiently and without loss of service. Finally, dis‐
tributed systems should facilitate cross-datacenter replication,
allowing for data replication across wide distances, often times to a
disaster recovery center offsite.

12 | Chapter 2: Processing Transactions and Analytics in a Single Database



Data Backup
In addition to durability and high availability, an in-memory data‐
base system should also provide ways to create backups for the data‐
base. This is typically done by issuing a command to create on-disk
copies of the current state of the database. Such backups can also be
restored into both existing and new database instances in the future
for historical analysis and long-term storage.

Data Persistence and Availability | 13





CHAPTER 3

Dawn of the Real-Time Dashboard

Before delving further into the systems and techniques that power
predictive analytics applications, human consumption of analytics
merits further discussion. Although this book focuses largely on
applications using machine learning models to make decisions
autonomously, we cannot forget that it is ultimately humans design‐
ing, building, evaluating, and maintaining these applications. In fact,
the emergence of this type of application only increases the need
for trained data scientists capable of understanding, interpreting,
and communicating how and how well a predictive analytics appli‐
cation works.

Moreover, despite this book’s emphasis on operational applications,
more traditional human-centric, report-oriented analytics will not
go away. If anything, its value will only increase as data processing
technology improves, enabling faster and more sophisticated report‐
ing. Improvements like reduced Extract, Transform, and Load (ETL)
latency and faster query execution empowers data scientists and
increases the impact they can have in an organization.

Data visualization is arguably the single most powerful method for
enabling humans to understand and spot patterns in a dataset. No
one can look at a spreadsheet with thousands or millions of rows
and make sense of it. Even the results of a database query, meant to
summarize characteristics of the dataset through aggregation, can be
difficult to parse when it is just lines and lines of numbers. More‐
over, visualizations are often the best and sometimes only way to
communicate findings to a nontechnical audience.

15



Business Intelligence (BI) software enables analysts to pull data from
multiple sources, aggregate the data, and build custom visualizations
while writing little or no code. These tools come with templates that
allow analysts to create sophisticated, even interactive, visualization
without being expert frontend programmers. For example, an online
retail site deciding which geographical region to target its next ad
campaign could look at all user activity (e.g., browsing and purcha‐
ses) in a geographical map. This will help it to visually recognize
where user activity is coming from and make better decisions
regarding which region to target. An example of such a visualization
is shown in Figure 3-1.

Figure 3-1. Sample geographic visualization dashboard

Other related visualizations for an online retail site could be a bar
chart that shows the distribution of web activity throughout the dif‐
ferent hours of each day, or a pie chart that shows the categories of
products purchased on the site over a given time period.

Historically, out-of-the-box visual BI dashboards have been opti‐
mized for data warehouse technologies. Data warehouses typically
require complex ETL jobs that load data from real-time systems,
thus creating latency between when events happen and when infor‐
mation is available and actionable. As described in the last chapters,
technology has progressed—there are now modern databases
capable of ingesting large amounts of data and making that data
immediately actionable without the need for complex ETL jobs. Fur‐

16 | Chapter 3: Dawn of the Real-Time Dashboard



thermore, visual dashboards exist in the market that accommodate
interoperability with real-time databases.

Choosing a BI Dashboard
Choosing a BI dashboard must be done carefully depending on
existing requirements in your enterprise. This section will not make
specific vendor recommendations, but it will cite several examples
of real-time dashboards.

For those who choose to go with an existing, third-party, out-of-the-
box BI dashboard vendor, here are some things to keep in mind:

Real-time dashboards allow instantaneous queries to the underlying
data source

Dashboards that are designed to be real-time must be able to
query underlying sources in real-time, without needing to cache
any data. Historically, dashboards have been optimized for data
warehouse solutions, which take a long time to query. To get
around this limitation, several BI dashboards store or cache
information in the visual frontend as a performance optimiza‐
tion, thus sacrificing real-time in exchange for performance.

Real-time dashboards are easily and instantly shareable
Real-time dashboards facilitate real-time decision making,
which is enabled by how fast knowledge or insights from the
visual dashboard can be shared to a larger group to validate a
decision or gather consensus. Hence, real-time dashboards must
be easily and instantaneously shareable; ideally hosted on a
public website that allows key stakeholders to access the visuali‐
zation.

Real-time dashboards are easily customizable and intuitive
Customizable and intuitive dashboards are a basic requirement
for all good BI dashboards, and this condition is even more
important for real-time dashboards. The easier it is to build and
modify a visual dashboard, the faster it would be to take action
and make decisions.

Choosing a BI Dashboard | 17



Real-Time Dashboard Examples
The rest of this chapter will dive into more detail around modern 
dashboards that provide real-time capabilities out of the box. Note 
that the vendors described here do not represent the full set of 
BI dashboards in the market. The point here is to inform you of pos‐
sible solutions that you can adopt within your enterprise. The aim of 
describing the following dashboards is not to recommend one over 
the other. Building custom dashboards will be covered later in this 
chapter.

Tableau
As far as BI dashboard vendors are concerned, Tableau has among 
the largest market share in the industry. Tableau has a desktop 
version and a server version that either your company can host or 
Tableau can host for you (i.e., Tableau Online). Tableau can connect 
to real-time databases such as SingleStore with an out-of-the-
box connector or using the MySQL protocol connector. Figure 
3-2 shows a screenshot of an interactive map visualization created
using Tableau.

Figure 3-2. Tableau dashboard showing geographic distribution of
wind farms in Europe

18 | Chapter 3: Dawn of the Real-Time Dashboard



Zoomdata
Among the examples given in this chapter, Zoomdata facilitates real-
time visualization most efficiently, allowing users to configure zero 
data cache for the visualization frontend. Zoomdata can connect to 
real-time databases such as SingleStore with an out-of-the-box 
con‐nector or the MySQL protocol connector. Figure 3-3 
presents a screenshot of a custom dashboard showing taxi trip 
information in New York City, built using Zoomdata.

Figure 3-3. Zoomdata dashboard showing taxi trip information in 
New York City

Looker
Looker is another powerful BI tool that helps you to create real-time 
dashboards with ease. Looker also utilizes its own custom language, 
called LookML, for describing dimensions, fields, aggregates and 
relationships in a SQL database. The Looker app uses a model writ‐
ten in LookML to construct SQL queries against SQL databases, like 
SingleStore. Figure 3-4 is an example of an exploratory 
visualization of orders in an online retail store.

These examples are excellent starting points for users looking to 
build real-time dashboards.

Real-Time Dashboard Examples | 19



Figure 3-4. Looker dashboard showing a visualization of orders in an
online retail store

Building Custom Real-Time Dashboards
Although out-of-the-box BI dashboards provide a lot of functional‐
ity and flexibility for building visual dashboards, they do not
necessarily provide the required performance or specific visual fea‐
tures needed for your enterprise use case. Furthermore, these dash‐
boards are also separate pieces of software, incurring extra cost and
requiring you to work with a third-party vendor to support the tech‐
nology. For specific real-time analysis use cases for which you know
exactly what information to extract and visualize from your real-
time data pipeline, it is often faster and cheaper to build a custom
real-time dashboard in-house instead of relying on a third-party
vendor.

Database Requirements for Real-Time Dashboards
Building a custom visual dashboard on top of a real-time database
requires that the database have the characteristics detailed in the fol‐
lowing subsections.

Support for various programming languages
The choice of which programming language to use for a custom
real-time dashboard is at the discretion of the developers. There is
no “proper” programming language or protocol that is best for
developing custom real-time dashboards. It is recommended to go

20 | Chapter 3: Dawn of the Real-Time Dashboard



with what your developers are familiar with, and what your enter‐
prise has access to. For example, several modern custom real-time
dashboards are designed to be opened in a web browser, with the
dashboard itself built with a JavaScript frontend, and websocket
connectivity between the web client and backend server, communi‐
cating with a performant relational database.

All real-time databases must provide clear interfaces through which
the custom dashboard can interact. The best programmatic inter‐
faces are those based on known standards, and those that already
provide native support for a variety of programming languages.
A good example of such an interface is SQL. SQL is a known
standard with a variety of interfaces for popular programming lan‐
guages—Java, C, Python, Ruby, Go, PHP, and more. Relational data‐
bases (full SQL databases) facilitate easy building of custom
dashboards by allowing the dashboards to be created using almost
any programming language.

Fast data retrieval
Good visual real-time dashboards require fast data retrieval in addi‐
tion to fast data ingest. When building real-time data pipelines, the
focus tends to be on the latter, but for real-time data visual dash‐
boards, the focus is on the former. There are several databases that
have very good data ingest rates but poor data retrieval rates. Good
real-time databases have both. A real-time dashboard is only as
“real-time” as the speed that it can render its data, which is a func‐
tion of how fast the data can be retrieved from the underlying data‐
base. It also should be noted that visual dashboards are typically
interactive, which means the viewer should be able to click or drill
down into certain aspects of the visualizations. Drilling down typi‐
cally requires retrieving more data from the database each time an
action is taken on the dashboard’s user interface. For those clicks
to return quickly, data must be retrieved quickly from the underly‐
ing database.

Ability to combine separate datasets in the database
Building a custom visual dashboard might require combining infor‐
mation of different types coming from different sources. Good real-
time databases should support this. For example, consider building a
custom real-time visual dashboard from an online commerce web‐
site that captures information about the products sold, customer

Building Custom Real-Time Dashboards | 21



reviews, and user navigation clicks. The visual dashboard built for
this can contain several charts—one for popular products sold,
another for top customers, and one for the top reviewed products
based on customer reviews. The dashboard must be able to join
these separate datasets. This data joining can happen within the
underlying database or in the visual dashboard. For the sake of per‐
formance, it is better to join within the underlying database. If the
database is unable to join data before sending it to the custom dash‐
board, the burden of performing the join will fall to the dashboard
application, which leads to sluggish performance.

Ability to store real-time and historical datasets
The most insightful visual dashboards are those that are able to dis‐
play lengthy trends and future predictions. And the best databases
for those dashboards store both real-time and historical data in one
database, with the ability to join the two. This present and past com‐
bination provides the ideal architecture for predictive analytics.

22 | Chapter 3: Dawn of the Real-Time Dashboard



CHAPTER 4

Redeploying Batch
Models in Real Time

For all the greenfield opportunities to apply machine learning to
business problems, chances are your organization already uses some
form of predictive analytics. As mentioned in previous chapters, tra‐
ditionally analytical computing has been batch oriented in order to
work around the limitations of ETL pipelines and data warehouses
that are not designed for real-time processing. In this chapter, we
take a look at opportunities to apply machine learning to real-time
problems by repurposing existing models.

Future opportunities for machine learning and predictive analytics
span infinite possibilities, but there is still an incredible amount of
easily accessible opportunities today. These come by applying exist‐
ing batch processes based on statistical models to real-time data
pipelines. The good news is that there are straightforward ways to
accomplish this that quickly put the business rapidly ahead. Even
for circumstances in which batch processes cannot be eliminated
entirely, simple improvements to architectures and data processing
pipelines can drastically reduce latency and enable businesses
to update predictive models more frequently and with larger train‐
ing datasets.

Batch Approaches to Machine Learning
Historically, machine learning approaches were often constrained to
batch processing. This resulted from the amount of data required

23



for successful modeling, and the restricted performance of tradi‐
tional systems.

For example, conventional server systems (and the software opti‐
mized for those systems) had limited processing power such as a set
number of CPUs and cores within a single server. Those systems
also had limited high-speed storage, fixed memory footprints, and
namespaces confined to a single server.

Ultimately these system constraints led to a choice: either process a
small amount of data quickly or process large amounts of data in
batches. Because machine learning relies on historical data and
comparisons to train models, a batch approach was frequently
chosen (see Figure 4-1).

Figure 4-1. Batch approach to machine learning

With the advent of distributed systems, initial constraints were
removed. For example, the Hadoop Distributed File System (HDFS)
provided a plentiful approach to low-cost storage. New scalable
streaming and database technologies provided the ability to process
and serve data in real time. Coupling these systems together pro‐
vides both a real-time and batch architecture.

This approach is often referred to as a Lambda architecture. A
Lambda architecture often consists of three layer: a speed layer, a
batch layer, and a serving layer, as illustrated in Figure 4-2.

The advantage to Lambda is a comprehensive approach to batch and
real-time workflows. The disadvantage is that maintaining two pipe‐
lines can lead to excessive management and administration to ach‐
ieve effective results.

24 | Chapter 4: Redeploying Batch Models in Real Time



Figure 4-2. Lambda architecture

Moving to Real Time: A Race Against Time
Although not every application requires real-time data, virtually
every industry requires real-time solutions. For example, in real
estate, transactions do not necessarily need to be logged to the milli‐
second. However, when every real estate transaction is logged to a
database, and a company wants to provide ad hoc access to that data,
a real-time solution is likely required.

Other areas for machine learning and predictive analytics applica‐
tions include the following:

• Information assets
— Optimizing commerce, recommendations, preferences

• Manufacturing assets
— Driving cost efficiency and system productivity

• Distribution assets
— Ensuring comprehensive fulfillment

Let’s take a look at manufacturing as just one example.

Manufacturing Example
Manufacturing is often a high-stakes, high–capital investment, high-
scale production operation. We see this across mega-industries
including automotive, electronics, energy, chemicals, engineering,
food, aerospace, and pharmaceuticals.

Moving to Real Time: A Race Against Time | 25



Companies will frequently collect high-volume sensor data from
sources such as these:

• Manufacturing equipment
• Robotics
• Process measurements
• Energy rigs
• Construction equipment

The sensor information provides readings on the health and effi‐
ciency of the assets, and is critical in areas of high capital expendi‐
ture combined with high operational expenditure.

Let’s consider the application of an energy rig. With drill bit and rig
costs ranging in the millions, making use of these assets efficiently
is paramount.

Original Batch Approach
Energy drilling is a high-tech business. To optimize the direction
and speed of drill bits, energy companies collect information from
the bits on temperature, pressure, vibration, and direction to assist
in determining the best approach.

Traditional pipelines involve collecting drill bit information and
sending that through a traditional enterprise message bus, overnight
batch processing, and guidance for the next day’s operations. Com‐
panies frequently rely on statistical modeling software from compa‐
nies like SAS to provide analytics on sensor information. Figure 4-3
offers an example of an original batch approach.

Figure 4-3. Original batch approach

26 | Chapter 4: Redeploying Batch Models in Real Time



Real-Time Approach
To improve operations, energy companies seek easier facilitation of 
adding and adjusting new data pipelines. They also desire the ability 
to process both real-time and historical data within a single system 
to avoid ETL, and they want real-time scoring of existing models.

By shifting to a real-time data pipeline supported by Kafka, Spark, 
and an in-memory database such as SingleStore, these objectives 
are easily reached (see Figure 4-4).

Figure 4-4. Real-time data pipeline supported by Kafka, Spark, and in-
memory database

Technical Integration and Real-Time Scoring
The new real-time solution begins with the same sensor inputs. Typ‐
ically, the software for edge sensor monitoring can be directed to
feed sensor information to Kafka.

After the data is in Kafka, it is passed to Spark for transformation
and scoring. This step is the crux of the pipeline. Spark enables the
scoring by running incoming data through existing models.

In this example, an SAS model can be exported as Predictive Model
Markup Language (PMML) and embedded inside the pipeline as
part of a Java Archive (JAR) file.

Real-Time Approach | 27



After the data has been scored, both the raw sensor data and the
results of the model on that data are saved in the database in the
same table.

When real-time scoring information is colocated with the sensor
data, it becomes immediately available for query without the need
for precomputing or batch processing.

Immediate Benefits from Batch to Real-Time
Learning
The following are some of the benefits of a real-time pipeline
designed as described in the previous section:

Consistency with existing models
By using existing models and bringing them into a real-time
workflow, companies can maintain consistency of modeling.

Speed to production
Using existing models means more rapid deployment and an
existing knowledge base around those models.

Immediate familiarity with real-time streaming and analytics
By not changing models, but changing the speed, companies
can get immediate familiarity with modern data pipelines.

Harness the power of distributed systems
Pipelines built with Kafka, Spark, and SingleStore harness 
the power of distributed systems and let companies benefit 
from the flexibility and performance of such systems. For 
example, com‐panies can use readily available industry 
standard servers, or cloud instances to stand up new data 
pipelines.Cost savings
Most important, these real-time pipelines facilitate dramatic
cost savings. In the case of energy drilling, companies need to
determine the health and efficiency of the drilling operation.
Push a drill bit too far and it will break, costing millions to
replace and lost time for the overall rig. Retire a drill bit too
early and money is left on the table. Going to a real-time model
lets companies make use of assets to their fullest extent without
pushing too far to cause breakage or a disruption to rig opera‐
tions.

28 | Chapter 4: Redeploying Batch Models in Real Time



CHAPTER 5

Applied Introduction to
Machine Learning

Even though the forefront of artificial intelligence research captures
headlines and our imaginations, do not let the esoteric reputation of
machine learning distract from the full range of techniques with
practical business applications. In fact, the power of machine learn‐
ing has never been more accessible. Whereas some especially obli‐
que problems require complex solutions, often, simpler methods
can solve immediate business needs, and simultaneously offer addi‐
tional advantages like faster training and scoring. Choosing the
proper machine learning technique requires evaluating a series of
tradeoffs like training and scoring latency, bias and variance, and in
some cases accuracy versus complexity.

This chapter provides a broad introduction to applied machine
learning with emphasis on resolving these tradeoffs with business
objectives in mind. We present a conceptual overview of the theory
underpinning machine learning. Later chapters will expand the dis‐
cussion to include system design considerations and practical advice
for implementing predictive analytics applications. Given the exper‐
imental nature of applied data science, the theme of flexibility will
show up many times. In addition to the theoretical, computational,
and mathematical features of machine learning techniques, the real‐
ity of running a business with limited resources, especially limited
time, affects how you should choose and deploy strategies.

29



Before delving into the theory behind machine learning, we will dis‐
cuss the problem it is meant to solve: enabling machines to make
decisions informed by data, where the machine has “learned” to per‐
form some task through exposure to training data. The main
abstraction underpinning machine learning is the notion of a
model, which is a program that takes an input data point and then
outputs a prediction.

There are many types of machine learning models and each formu‐
lates predictions differently. This and subsequent chapters will focus
primarily on two categories of techniques: supervised and unsuper‐
vised learning.

Supervised Learning
The distinguishing feature of supervised learning is that the training
data is labeled. This means that, for every record in the training
dataset, there are both features and a label. Features are the data rep‐
resenting observed measurements. Labels are either categories (in a
classification model) or values in some continuous output space (in
a regression model). Every record associates with some outcome.

For instance, a precipitation model might take features such as
humidity, barometric pressure, and other meteorological informa‐
tion and then output a prediction about the probability of rain. A
regression model might output a prediction or “score” representing
estimated inches of rain. A classification model might output a pre‐
diction as “precipitation” or “no precipitation.” Figure 5-1 depicts
the two stages of supervised learning.

Figure 5-1. Training and scoring phases of supervised learning

“Supervised” refers to the fact that features in training data corre‐
spond to some observed outcome. Note that “supervised” does not
refer to, and certainly does not guarantee, any degree of data quality.
In supervised learning, as in any area of data science, discerning

30 | Chapter 5: Applied Introduction to Machine Learning



data quality—and separating signal from noise—is as critical as any
other part of the process. By interpreting the results of a query or
predictions from a model, you make assumptions about the quality
of the data. Being aware of the assumptions you make is crucial to
producing confidence in your conclusions.

Regression
Regression models are supervised learning models that output
results as a value in a continuous prediction space (as opposed to a
classification model, which has a discrete output space). The solu‐
tion to a regression problem is the function that best approximates
the relationship between features and outcomes, where “best” is
measured according to an error function. The standard error meas‐
urement function is simply Euclidian distance—in short, how far
apart are the predicted and actual outcomes?

Regression models will never perfectly fit real-world data. In fact,
error measurements approaching zero usually points to overfitting,
which means the model does not account for “noise” or variance in
the data. Underfitting occurs when there is too much bias in the
model, meaning flawed assumptions prevent the model from accu‐
rately learning relationships between features and outputs.

Figure 5-2 shows some examples of different forms of regression.
The simplest type of regression is linear regression, in which the sol‐
ution takes the form of the line, plane, or hyperplane (depending on
the number of dimensions) that best fits the data (see Figure 5-3).
Scoring with a linear regression model is computationally cheap
because the prediction function in linear, so scoring is simply a mat‐
ter of multiplying each feature by the “slope” in that direction and
then adding an intercept.

Figure 5-2. Examples of linear and polynomial regression

Supervised Learning | 31



Figure 5-3. Linear regression in two dimensions

There are many types of regression and layers of categorization—
this is true of many machine learning techniques. One way to cate‐
gorize regression techniques is by the mathematical format of the
solution. One form of solution is linear, where the prediction func‐
tion takes the form of a line in two dimensions, and a plane or
hyperplane in higher dimensions. Solutions in n dimensions take
the following form:

a1x1 + a2x2 + ... + an–1xn–1 + b

One advantage of linear models is the ease of scoring. Even in high
dimensions—when there are several features—scoring consists of
just scalar addition and multiplication. Other regression techniques
give a solution as a polynomial or a logistic function. The following
table describes the characteristics of different forms of regression.

Regression model Solution in two dimensions Output space
Linear ax + b Continuous
Polynomial a1xn + a2xn–1 + ... + anx + an + 1

Continuous

Logistic
L/ 1 + e

–k(x–x0) Continuous (e.g., population
modeling) or discrete (binary
categorical response)

32 | Chapter 5: Applied Introduction to Machine Learning



It is also useful to categorize regression techniques by how they
measure error. The format of the solution—linear, polynomial,
logistic—does not completely characterize the regression technique.
In fact, different error measurement functions can result in different
solutions, even if the solutions take the same form. For instance, you
could compute multiple linear regressions with different error meas‐
urement functions. Each regression will yield a linear solution, but
the solutions can have different slopes or intercepts depending on
error function.

The method of least squares is the most common technique for
measuring error. In least-squares approaches, you compute the total
error as the sum of squares of the errors the solution relative to each
record in the training data. The “best fit” is the function that mini‐
mizes the sum of squared errors. Figure 5-4 is a scatterplot and
regression function, with red lines drawn in representing the predic‐
tion error for a given point. Recall that the error is the distance
between the predicted outcome and the actual outcome. The solu‐
tion with the “best fit” is the one that minimizes the sum of each
error squared.

Figure 5-4. A linear regression, with red lines representing prediction
error for a given training data point

Supervised Learning | 33



Least squares is commonly associated with linear regression. In par‐
ticular, a technique called Ordinary Least Squares is a common way
of finding the regression solution with the best fit. However, least-
squares techniques can be used with polynomial regression, as well.
Whether the regression solution is linear or a higher degree polyno‐
mial, least squares is simply a method of measuring error. The for‐
mat of the solution, linear or polynomial, determines what shape
you are trying to fit to the data. However, in either case, the problem
is still finding the prediction function that minimizes error over the
training dataset.

Although Ordinary Least Squares provides a strong intuition for
what the error measurement function represents, there are many
ways of defining error in a regression problem. There are many var‐
iants on least-squares error function, such as weighted least squares,
in which some observations are given more or less weight according
to some metric that assesses data quality. There are also various
approaches that fall under regularization, which is a family of tech‐
niques used to make solutions more generalizable rather than over‐
fit to a particular training set. Popular techniques for regularized
least squares includes Ridge Regression and LASSO.

Whether you’re using the method of least squares or any other tech‐
nique for quantifying error, there are two sources of error: bias,
flawed assumptions in model that conceal relationships between the
features and outcomes of a dataset, and variance, which is naturally
occurring “noise” in a dataset. Too much bias in the model causes
underfitting, whereas too much variance causes overfitting. Bias and
variance tend to inversely correlate—when one goes up the other
goes down—which is why data scientists talk about a “bias-variance
tradeoff.” Well-fit models find a balance between the two sources
of error.

Classification
Classification is very similar to regression and uses many of the
same underlying techniques. The main difference is the format of
the prediction. The intuition for regression is that you’re matching a
line/plane/surface to approximate some trend in a dataset, and every
combination of features corresponds to some point on that surface.
Formulating a prediction is a matter of looking at the score at a
given point. Binary classification is similar, except instead of pre‐
dicting by using a point on the surface, it predicts one of two cate‐

34 | Chapter 5: Applied Introduction to Machine Learning



gories based on where the point resides relative to the surface (above
or below). Figure 5-5 shows a simple example of a linear binary clas‐
sifier.

Figure 5-5. Linear binary classifier

Binary classification is the most commonly used and best-
understood type of classifier, in large part because of its relationship
with regression. There are many techniques and algorithms that are
used for training both regression and classification models.

There are also “multiclass” classifiers, which can use more than two
categories. A classic example of a multiclass classifier is a handwrit‐
ing recognition program, which must analyze every character and
then classify what letter, number, or symbol it represents.

Unsupervised Learning
The distinguishing feature of unsupervised learning is that data is
unlabeled. This means that there are no outcomes, scores, or catego‐
rizations associated with features in training data. As with super‐
vised learning, “unsupervised” does not refer to data quality. As in
any area of data science, training data for unsupervised learning will
not be perfect, and separating signal from noise is a crucial compo‐
nent of training a model.

Unsupervised Learning | 35



The purpose of unsupervised learning is to discern patterns in data
that are not known beforehand. One of its most significant applica‐
tions is in analyzing clusters of data. What the clusters represent, or
even the number of clusters, is often not known in advance of build‐
ing the model. This is the fundamental difference between unsuper‐
vised and supervised learning, and why unsupervised learning is
often associated with data mining—many of the applications for
unsupervised learning are exploratory.

It is easy to confuse concepts in supervised and unsupervised learn‐
ing. In particular, cluster analysis in unsupervised learning and clas‐
sification in supervised learning might seem like similar concepts.
The difference is in the framing of the problem and information you
have when training a model. When posing a classification problem,
you know the categories in advance and features in the training data
are labeled with their associated categories. When posing a cluster‐
ing problem, the data is unlabeled and you do not even know the
categories before training the model.

The fundamental differences in approach actually create opportuni‐
ties to use unsupervised and supervised learning methods together
to attack business problems. For example, suppose that you have a
set of historical online shopping data and you want to formulate a
series of marketing campaigns for different types of shoppers. Fur‐
thermore, you want a model that can classify a wider audience,
including potential customers with no purchase history.

This is a problem that requires a multistep solution. First you need
to explore an unlabeled dataset. Every shopper is different and,
although you might be able to recognize some patterns, it is proba‐
bly not obvious how you want to segment your customers for inclu‐
sion in different marketing campaigns. In this case, you might apply
an unsupervised clustering algorithm to find cohorts of products
purchased together. Using this clustering information to your pur‐
chase data then allows you to build a supervised classification model
that correlates purchasing cohort with other demographic informa‐
tion, allowing you to classify your marketing audience members
without a purchase history. Using an unsupervised learning model
to label data in order to build a supervised classification model is an
example of semi-supervised learning.

36 | Chapter 5: Applied Introduction to Machine Learning



Cluster Analysis
Cluster analysis programs detect patterns in the grouping of data.
There are many approaches to clustering problems, but each has
some measure of “closeness” and then optimizes arrangements of
clusters to minimize the distance between points within a cluster.

Perhaps the easiest method of cluster analysis to grasp are centroid-
based techniques like k-means. Centroid-based means that clusters
are defined so as to minimize distances from a central point. The
central point does not need to be a record in the training data—it
can be any point in the training space. Figure 5-6 includes two scat‐
terplots, the second of which includes three centroids (k = 3).

Figure 5-6. Sample clustering data with centroids determined by k-
means

The “k” in k-means refers to the number of centroids. K-means
algorithms iterate through values of k and choose optimal place‐
ments for the k centroids at each iteration so as to minimize the
mean distance from training data points to centroid for each cluster.
Figure 5-7 shows two examples of k-means applied to the same
dataset but with different values of k.

Figure 5-7. K-means examples with k = 2 and k = 3, respectively

Unsupervised Learning | 37



There are many other methods for cluster analysis. Hierarchical
methods derive sequences of increasingly large and inclusive clus‐
ters, as clusters combine with other nearby clusters at different
stages of the model. These methods produce trees of clusters. On
one end of the tree is a single node: one cluster that includes every
point in the training. At the other end, every data point is its own
cluster. Neither extreme is useful for analysis, but in between there is
an entire series of options for dividing up the data into clusters. The
method chooses an optimal depth in the hierarchy of clustering
options.

Anomaly Detection
Although anomaly detection is its own area of study, one approach
follows naturally from the discussion of clustering. Algorithms for
clustering methods iterate through series of potential groupings; for
example, k-means implementations iterate through values of k and
assess them for fit. Because there is noise in any real world dataset,
models that are not overfitted will leave outliers that are not part of
any cluster.

Another class of methods (that still bears resemblance to cluster
analysis) looks for local outliers that are unusually far away from
their closest neighbors.

38 | Chapter 5: Applied Introduction to Machine Learning



CHAPTER 6

Real-Time Machine
Learning Applications

Combining terms like “real time” and “machine learning” runs the
risk of drifting into the realm of buzz and away from business prob‐
lems. However, improvements in real-time data processing systems
and the ready availability of machine learning libraries make it so
that applying machine learning to real-time problems is not only
possible, but in many cases simply requires connecting the dots on a
few crucial components.

The stereotype about data science is that its practitioners operate in
silos, issuing declarations about data from on high, removed from
the operational aspects of a business. This mindset reflects the
latency and difficulty associated with legacy data analysis and pro‐
cessing toolchains. In contrast, modern database and data process‐
ing system design must embrace modularity and accessibility
of data.

Real-Time Applications of Supervised
Learning
The power of supervised learning applies to numerous business
problems. Regression is familiar to any data scientist, finance or risk
analyst, or anyone who took a statistics class in college. What has
changed recently is the availability of powerful data processing soft‐

39



1 Apache Spark has a wide range of both production and development uses. The claim
here is merely that starting and stopping Spark jobs is time and resource-intensive,
which prevents it from being used as a real-time scoring engine.

ware that enables businesses to apply these tools to extremely low-
latency problems.

Real-Time Scoring
Any system that automates data-driven decision making, for
instance, will need to not only build and train a model, but use the
model to score or make predictions. When developing a model, data
scientists generally work in some development environment tailored
for statistics and machine learning, such as Python, R, and Apache
Spark. Using these tools, data scientists can train and test models all
in one place and offer powerful abstractions for building models
and making predictions while writing relatively little code.

Many data science tools are designed for interactive use by data sci‐
entists, rather than to power production systems.1 See Figure 6-1 for
an example of such interactive data analysis. Even though interactive
tools are great for development, they are not designed for extremely
low-latency production applications. For instance, a digital advertis‐
ing network has on the order of milliseconds to choose and display
an advertisement before a web page loads. In many cases, primarily
interactive tools do not offer low enough latency for production
use cases.

Figure 6-1. Interactive data analysis in Python

This is why when we talk about supervised learning we need to dis‐
tinguish the way we think about scoring in development versus in

40 | Chapter 6: Real-Time Machine Learning Applications



production. Scoring latency in a development environment is gener‐
ally just an annoyance. In production, the reduction or elimination
of latency is a source of competitive advantage. This means that,
when considering techniques and algorithms for predictive analyt‐
ics, you need to evaluate not only the bias and variance of the
model, but how the model will actually be used for scoring in pro‐
duction.

Fast Training and Retraining
Sometimes, real-world factors change (in real time) the phenom‐
enon you are trying to model. When this happens, a production sys‐
tem can actually be bound by training latency rather than scoring
latency. For instance, the relative weight, or ability to affect the over‐
all outcome, of certain features might change. In this case, you can‐
not simply train a model once and expect it to give accurate answers
forever. This scenario is especially common in “of the moment”
trend spotting like in social media and digital advertising.

Deciding on the most efficient algorithm for training a given type of
model exceeds the scope of this book. For many machine learning
techniques, this remains an open question. However, there are
straightforward system design considerations to enable fast training.

In-memory storage
In-memory storage is a prerequisite for performing analytics on
changing datasets. Locking and hardware contention make it
difficult or impossible to manage fast-changing datasets on disk,
let alone to make the data simultaneously available for machine
learning.

Access to real-time and historical data
A major component in modeling changing systems is under‐
standing when your model needs to change. Making this deci‐
sion requires simultaneous access to both the most recent data,
and historical data on which the current and/or previous mod‐
els are based. Whereas an offline data lake might satisfy the
needs of early-stage model development, modeling a dynamic
system requires faster access to data.

Convergence of systems
Any large-scale data processing pipeline will include multiple
systems, but limiting the number reduces latency associated

Real-Time Applications of Supervised Learning | 41



with data transfer and other intersystem communication. For
instance, suppose that you want to write a program that builds a
model using data from the last fraction of a second. By, for
instance, converging scoring and transaction processing in a
single database, you save valuable time that would have been
lost to data transfer. For real-time applications like digital adver‐
tising, a fraction of a second is the entire window for the trans‐
action.

Unsupervised Learning
Given the nature of unsupervised learning, its real-time applications
can be less intuitive than the applications for supervised learning.
Recall that unsupervised learning occurs on unlabeled data, which it
is commonly associated with more offline tasks like data mining.
Many unsupervised learning problems do not have an analogue to
real-time scoring in a regression or classification model. However,
advances in data processing technology have opened opportunities
to use unsupervised learning techniques like clustering and anomaly
detection in real-time capacities.

Real-Time Anomaly Detection
One of the most promising applications of real-time unsupervised
learning is real-time anomaly detection, which you can use to
strengthen monitoring applications; for example, Internet security
and industrial machine data.

The nature of unsupervised learning in general, and anomaly detec‐
tion in particular, is that you do not know exactly what you are look‐
ing for. Depending on the nature of the dataset and whether and
how it changes over time, clusters and what constitutes an outlier
can also change.

Suppose that you are monitoring network traffic. You might track
information like the IP addresses, average response times, and
amount of data sent over the network. The values of some of these
features can change dramatically based on factors like amount of
network traffic, and even factors completely beyond the scope of
your system, such as an Internet Service Provider outage. Data that
indicates a “normal” network user might be very different under
unusual circumstances.

42 | Chapter 6: Real-Time Machine Learning Applications



Real-Time Clustering
There are many scenarios for which solving a clustering problem
will require frequent retraining. First, though, here’s a corollary to
the previous section about anomaly detection. As discussed in
Chapter 5, clustering techniques are often used to detect anomalies
because, in finding clusters of similar data, everything left out of a
cluster is by definition an anomaly. There are also straightforward
“clustering as clustering” real-time applications for which the group‐
ings of data are changing. A high-traffic digital media company, for
instance, might want to build a clustering model to determine which
videos and articles are consumed together. Given modern news
cycles and the dissemination of viral content, it is easy to envision
the clustering of “related” videos and articles changing rapidly.

Even when the underlying phenomenon you are modeling is rela‐
tively static, meaning clusters are not shifting in real time, there can
still be immense value to frequent retraining. As more training data
becomes available, retraining with more information can yield dif‐
ferent clustering results.

Unsupervised Learning | 43





CHAPTER 7

Preparing Data Pipelines for
Predictive Analytics and

Machine Learning

Advances in data processing technology have changed the way we
think about pipelines and what you can accomplish in real time.
These advances also apply to machine learning—in many cases,
making a predictive analytics application real-time is a question of
infrastructure. Although certain techniques are better suited to real-
time analytics and tight training or scoring latency requirements,
the challenges preventing adoption are largely related to infrastruc‐
ture rather than machine learning theory. And even though many
topics in machine learning are areas of active research, there are also
many useful techniques that are already well understood and can
immediately provide major business impacts when implemented
correctly.

Figure 7-1 shows a machine learning pipeline applied to a real-time
business problem. The top row of the diagram represents the opera‐
tional component of the application; this is where the model is
applied to automate real-time decision making. For instance, a user
accesses a web page, and the application must choose a targeted
advertisement to display in the time it takes the page to load. When
applied to real-time business problems, the operational component
of the application always has restrictive latency requirement.

45



Figure 7-1. A typical machine learning pipeline powering a real-time
application

The bottom row in Figure 7-1 represents the learning component
of the application. It creates the model that the operational compo‐
nent will apply to make decisions. Depending on the application,
the training component might have less stringent latency require‐
ments—training is a one-time cost because scoring multiple data
points does not require retraining. That said, many applications can
benefit from reduced training latency by enabling more frequent
retraining as dynamics of the underlying system change.

Real-Time Feature Extraction
Many businesses have the opportunity to dramatically improve their
data intake systems. In the legacy data processing mindset, Extract,
Transform, and Load (ETL) is an offline operation. We owe this
assumption to the increasingly outdated convention of separating
stream processing from transaction processing, and separating ana‐
lytics from both. These separations were motivated largely by the
latency that comes with disk-based, single-machine systems. The
emergence of in-memory and distributed data processing systems
has changed the way we think about datastores. See Figure 7-2 for
an example of real-time pipelines.

Modern stream processing and database systems speed up and sim‐
plify the process of annotating data with, for example, additional
features or labels for supervised learning.

• Use a stream processing engine to add (or remove) features
before committing data to a database. Although you can cer‐
tainly “capture now, analyze later,” there are clear advantages to
preprocessing data so that it can be analyzed as soon as it arrives
in the datastore. Often, it is valuable to add metadata like time‐
stamps, location information, or other information that is not
contained in the original record.

46 | Chapter 7: Preparing Data Pipelines for Predictive Analytics and Machine Learning



• Use a real-time database to update records as more information
becomes available. Although append-only databases (no
updates or deletes) enjoyed some popularity in years past, this
approach creates multiple records corresponding to a single
entity. Even though this is not inherently flawed, this approach
will require more time-consuming queries to retrieve informa‐
tion.

Figure 7-2. Real-time pipelines—OLTP and OLAP

Deciding when to annotate real-time data touches on issues relating
to data normalization and when to store versus when to compute a
particular value.

Minimizing Data Movement
The key to implementing real-time predictive analytics applications
is minimizing the number of systems involved and the amount of
data movement between them. Even if you carefully optimize your
application code, real-time applications do not have time for unnec‐
essary data movement. What constitutes “unnecessary” varies from
case to case, but the naive solution usually falls under this category.

When first building a model, you begin with a large dataset and per‐
form tasks like feature selection, which is the process of choosing
features of the available data that will be used to train the model. For
subsequent retrainings, there is no need to operate on the entire

Minimizing Data Movement | 47



dataset. Pushing computation to the database reduces the amount of
data transferred between systems. VIEWs provide a convenient
abstraction for limiting data transfer. Although traditionally associ‐
ated with data warehousing workloads, VIEWs into a real-time
database can perform data transformations on the fly, dramatically
speeding up model training time. Advances in query performance,
specifically the emergence of just-in-time compiled query plans, fur‐
ther expand the real-time possibilities for on-the-fly data prepro‐
cessing with VIEWs.

Scoring with supervised learning models presents another opportu‐
nity to push computation to a real-time database. Whereas it might
be tempting to perform scoring in the same interactive environment
where you developed the model, in most cases this will not satisfy
the latency requirements of real-time use cases. Depending on the
type of model, often the scoring function can be implemented in
pure SQL. Then, instead of using separate systems for scoring and
transaction processing, you do both in the database.

Dimensionality Reduction
Dimensionality reduction is an array of technique for reducing and
simplifying the input space for a model. This can include simple fea‐
ture selection, which simply removes some features because they are
uncorrelated (i.e., superfluous) or otherwise impede training.
Dimensionality reduction is also used for underdetermined systems
for which there are more variables than there are equations defining
their relationships to one another. Even if all of the features are
potentially “useful” for modeling, finding a unique solution to the
system requires reducing the number of variables (features) to be no
more than the number of equations.

There are many dimensionality reduction techniques with different
applications and various levels of complexity. The most widely used
technique is Principal Component Analysis (PCA), which linearly
maps the data into a lower dimensional space that preserves as
much total variance as possible while removing features that con‐
tribute less variance. PCA transforms the “most important” features
into a lower-dimension representation called principal components.
The final result is an overdetermined system of equations (i.e., there
is a unique solution) in a lower-dimension space with minimal
information loss.

48 | Chapter 7: Preparing Data Pipelines for Predictive Analytics and Machine Learning



There are many other dimensionality reduction techniques includ‐
ing Linear Discriminant Analysis (LDA), Canonical Correlation
Analysis (CCA), and Singular Value Decomposition (SVD). Each of
the techniques mentioned so far transforms data linearly into the
lower-dimensional space. There are also many nonlinear methods
including a nonlinear generalization of PCA. These nonlinear tech‐
niques are also referred to as “manifold learning.” Other common
nonlinear techniques include Sammon Mapping, Diffusion Map‐
ping, and Kernel PCA.

Dimensionality Reduction | 49





CHAPTER 8

Predictive Analytics in Use

There will be numerous applications of predictive analytics and
machine learning to real-time challenges with adoption far and
wide.

Expanding on the earlier discussion about taking machine learning
from batch to real-time machine learning, in this chapter, we
explore another use case, this one specific to the Internet of Things
(IoT) and renewable energy.

Renewable Energy and Industrial IoT
The market around the Industrial Internet of Things (IIoT) is rap‐
idly expanding, and is set to reach $150 billion in 2020, according to
research firm Markets and Markets. According to the firm,

IIoT is the integration of complex physical machinery with indus‐
trial networks and data analytics solutions to improve operational
efficiency and reduce costs.

Renewable energy is an equally high growth sector. In mid-2016,
Germany announced that it had developed almost all of its power
from renewable energy (“Germany Just Got Almost All of Its Power
From Renewable Energy,” May 15, 2016).

The overall global growth in renewable energy continues at a break‐
neck pace, with the investment in renewables reaching $286 billion
worldwide in 2015 (BBC).

51

http://bit.ly/mm-iiot
http://bit.ly/de-power
http://bit.ly/de-power
http://bit.ly/bbc-renew


PowerStream: A Showcase Application of
Predictive Analytics for Renewable Energy
and IIoT
PowerStream is an application that predicts the global health of
wind turbines. It tracks the status of nearly 200,000 wind turbines
around the world across approximately 20,000 wind farms. With
each wind turbine reporting multiple sensor updates per second, the
entire workload ranges between 1 to 2 million inserts per second.

The goal of the showcase is to understand the sensor readings and
predict the health of the turbines. The technical crux is the volume
of data as well as its continuous, dynamic flow. The underlying data
pipeline needs to be able to capture and process this in real-time.

PowerStream Software Architecture
The PowerStream software architecture follows a similar architec‐
ture as you’ve seen in earlier chapters, which you can see in
Figure 8-1.

PowerStream Hardware Configuration
With the power of distributed systems, you can implement rich
functionality on a small consolidated hardware footprint. For exam‐
ple, the PowerStream architecture supports high-volume real-time
data pipelines across the following:

• A message queue
• A transformation and scoring engine, Spark
• A stateful, persistent, memory-optimized database
• A graphing and visualization layer

The entire pipeline runs on just seven cloud server instances, in this
case Amazon Web Services (AWS) C-2x large. At roughly $0.31 per
hour per machine, the annual hardware total is approximately
$19,000 for AWS instances.

52 | Chapter 8: Predictive Analytics in Use



Figure 8-1. PowerStream software architecture

The capability to handle such a massive task with such a small hard‐
ware footprint is a testament to the advances in distributed and 
memory-optimized systems.

PowerStream Application Introduction
The basics of the interface include a visualization layer. The wind‐
farm and turbine colors represent state based on data sent from the 
turbines to Kafka, then through Streamliner for machine learning 
with Spark, then on to SingleStore. This stream begins with 
integers and tuples (doubles?) emitted from each turbine.

After data is in a memory-optimized database, you can take interest‐
ing approaches such as building applications on that live, streaming 
data. In PowerStream, we use a developer-friendly mapping tool 
called Mapbox which provides a mapping layer embedded in a 
browser. Mapbox has an API and enables rapid development of 
dynamic applications.

For example, zooming in to the map (see Figure 8-2) allows for 
inspection from the windfarm down to the turbine level, and even 
seeing values of individual sensors.

One critical juncture of this application is the connection between 
Spark and the database, enabled by the SingleStore Spark 
Connector. The performance and low latency comes from both 
systems being distributed and memory optimized, so working with 
Resilient Dis‐tributed Datasets and Dataframes becomes very 
efficient as each node in one cluster communicates with each 
node in another clus‐

PowerStream: A Showcase Application of Predictive Analytics for Renewable Energy and IIoT | 53



ter. This speed makes building an application easier. The time from
ingest, to real-time scoring, and then being saved to a relational
database can easily be less than one second. At that point, any SQL-
capable application is ready to go.

Figure 8-2. PowerStream application introduction

Adding the machine learning component delivers a rich set of appli‐
cations and alerts with many types of sophisticated logic flowing in
real time.

For example, we classify types of potential failures by predicting
which turbines are failing and, more specifically, how they are fail‐
ing. Understandably, the expense of a high-cost turbine not working
is significant. Predictive alerts enable energy utilities to deploy
workforces and spare parts efficiently.

Because data in a relational, SQL-capable database is extremely
accessible to most enterprises, a rich set of Business Intelligence (BI)
tools experience the immediate benefit of real-time data. For exam‐
ple, the screenshots presented in Figure 8-3 and Figure 8-4 show
what is possible with Tableau.

And when failures are introduced into the system, the dashboard
changes to a mix of yellow and red.

54 | Chapter 8: Predictive Analytics in Use



Figure 8-3. PowerStream interface using Tableau—status: healthy

Figure 8-4. PowerStream interface using Tableau—status: warnings

PowerStream Details
One layer down in the application, updates come from simulated
sensor values. Turbine locations are accurate based on a global data‐
base, with concentrations in countries like Germany, which is
known for renewable energy success.

PowerStream sets a column in the turbine table to a value. Based on
that value, the application can predict if the turbine is about to fail.
Yellow or red indicates different failure states.

Examining the specific pipelines, we see one for scoring called ML
and one for alerts (see Figure 8-5).

PowerStream: A Showcase Application of Predictive Analytics for Renewable Energy and IIoT | 55



Figure 8-5. ML and Alerts pipelines

The ML pipeline shows throughput in the 1 to 2–million-
transaction-per-second range (see Figure 8-6).

Figure 8-6. The ML pipeline showing throughput in the 1 to 2 million
transactions-per-second range

The Alerts pipeline shows throughput in the 500-rows-per-second
range (see Figure 8-7).

56 | Chapter 8: Predictive Analytics in Use



Figure 8-7. The Alerts pipeline showing throughput in the 500-rows-
per-second range

The data from Kafka comes by simply identifying the Zookeeper 
quorum IP address for the Kafka cluster.

Within the Streamliner application, you can create a transform in 
Scala or Python. If you’re using Python, you can edit the transfor‐
mation within the browser. If you’re using Scala, you determine 
the Class and you can change the JAR file that has the definition of 
that class.

Implementation is straightforward as Streamliner and Spark apply 
the machine learning model for each record coming in from Kafka 
and pushed into the database, under the table name Sensors.

One advantage of storing the pipeline in a database is the ability to 
store data efficiently. In this pipeline, on duplicate key behavior, data 
is replaced. More specifically, every data point updates a value for a 
particular wind turbine and instead of just accumulating this data, 
we update it.

Advantages of Spark Coupled with a Distributed,
Relational, Memory-Optimized Database
These two technologies work well together. For example, 
SingleStore can focus on speed, storage, and managing state, 
whereas Spark can focus on transformation. This easy pipeline 
development comes

PowerStream: A Showcase Application of Predictive Analytics for Renewable Energy and IIoT | 57



through the SingleStore Spark Connector for easy and 
performant data pipelines.

Inside the transformation stage, SQL commands can be sent to 
SingleStore or Spark SQL. When going to Spark SQL, you also 
can choose to push SQL into a SQL-optimized database, essentially 
dele‐gating parts of the SQL query that query the database to the 
data‐base itself. Put another way, filters, joins, aggregations, and 
group-by operations execute directly in the database for 
maximum perfor‐mance.

Developers can also join data between SingleStore and data 
stored elsewhere such as Hadoop, taking advantage of both 
database func‐tionality and code written for Spark. For real-
time applications, developers can focus on SQL in SingleStore for 
speed and maximum concurrency, and simultaneously run 
overnight batch operations using Spark SQL across SingleStore 
Resilient Distributed Datasets (RDDs) and other RDDs without 
necessarily requiring pushdown. This ensures that batch jobs do not 
consume real-time resources.

SQL Pushdown Details
Unlike a job-scheduled system like Spark, an in-memory database 
like SingleStore is continually operating in real time, and requests 
are processed live. There are no jobs created, and there is no job 
man‐agement. This architecture responds at the millisecond 
level and delivers great concurrency.

This low latency and high concurrency support for SQL compli‐
ments Spark capabilities, and provides a persistent, transactional 
storage layer. The overarching use case is Spark as a high-level inter‐
face, with key functions such as persistence, accelerated query exe‐
cution, and concurrency pushed down to the in-memory database.

PowerStream at the Command Line
To examine the power of Spark and SingleStore together, we can 
jump into the Spark shell and take a look at a query and its 
definition.

In the example that follows, we are selecting a turbine ID with two 
subselects joining on a complex condition. This is not an equality 
join but rather a join on distance, whether the status of one row is 
within a particular distance from another side of the join.
58 | Chapter 8: Predictive Analytics in Use



scala> query
res11: String =
"
SELECT a.turbine_id
FROM
    (SELECT * FROM turbines_model WHERE windfarm_id < 100) a,
    (SELECT * FROM turbines_model WHERE windfarm_id < 100) b
WHERE
    abs(a.status1_raw - b.status1_raw) < 0.00000000001
"

If we look at the explain plan, we see how Spark would run the
query. One operator of particular note is CartesianProduct, which
likely has a lengthy impact on query execution.

scala> val dfNoPushdown = mscNoPushdown.sql(query)
dfNoPushdown: org.apache.spark.sql.DataFrame = [turbine_id: int]

scala> dfNoPushdown.explain()
== Physical Plan ==
TungstenProject [turbine_id#16]
 Filter (abs((status1_raw#17 - status1_raw#24)) < 1.0E-11)
  CartesianProduct
   ConvertToSafe
    TungstenProject [turbine_id#16,status1_raw#17]
     Filter (windfarm_id#15L < 100)

Scan MemSQLTableRelation(MemSQLCluster(MemSQLConf
(10.0.1.140,3306,root,KPVyNu98Kv8CjRcm,memturbine,
ErrorIfExists,DatabaseAndTable,10000,GZip)),

`memturbine`.`turbines_model_out`,
com.SingleStore.spark.connector.MemSQLContext@44026
30e)
[windfarm_id#15L,turbine_id#16,status1_raw#17,status1#18L,status2_raw#19,

status2#20L,status#21L]
   ConvertToSafe
    TungstenProject [status1_raw#24]
     Filter (windfarm_id#22L < 100)

Scan MemSQLTableRelation(MemSQLCluster(MemSQLConf
(10.0.1.140,3306,root,KPVyNu98Kv8CjRcm,memturbine,
ErrorIfExists,
DatabaseAndTable,10000,GZip)),
`memturbine`.`turbines_model_out`,
com.SingleStore.spark.connector.MemSQLContext@44026
30e)

[windfarm_id#22L,turbine_id#23,

status1_raw#24,status1#25L,
status2_raw#26,status2#27L,status#28L]

If we enable SQL pushdown, we can see at the top the SingleStore 
RDD, which pushes the query execution directly into the database.

PowerStream at the Command Line | 59



scala> val df = msc.sql(query)
df: org.apache.spark.sql.DataFrame = [turbine_id: int]

scala> df.explain()
== Physical Plan ==
MemSQLPhysicalRDD[SELECT (`f_7`) AS `turbine_id` FROM (SELECT  
(`query_1`.`f_4`) AS `f_7` FROM 
(SELECT (`query_1_1`.`f_1`) AS `f_4`, 
(`query_1_1`.`f_2`) AS `f_5`, (`query_2_1`.`f_3`) AS `f_6` FROM 
(SELECT (`query_1_2`.`turbine_id`) AS `f_1`, 
(`query_1_2`.`status1_raw`) AS `f_2` FROM (SELECT * FROM 
(SELECT * FROM `memturbine`.`turbines_model_out`) AS `query_1_3`  
  WHERE (`query_1_3`.`windfarm_id` < ?)) AS `query_1_2`) 
    AS `query_1_1` INNER JOIN (SELECT  
    (`query_2_2`.`status1_raw`) AS `f_3` FROM (SELECT * FROM 
    (SELECT * FROM `memturbine`.`turbines_model_out`) 

AS `query_2_3`  WHERE 
(`query_2_3`.`windfarm_id` < ?)) AS `query_2_2`) 
AS `query_2_1` WHERE  
(ABS((`query_1_1`.`f_2` - `query_2_1`.`f_3`)) < ?)) 
AS `query_1`) AS `query_0`]

  PartialQuery[query_0, f_7#45] ((`query_1`.`f_4`) AS `f_7`) ()
    JoinQuery[query_1, f_4#45,f_5#46,f_6#53] 
    ((`query_1_1`.`f_1`) AS `f_4`, (`query_1_1`.`f_2`) AS `f_5`, 
    (`query_2_1`.`f_3`) AS `f_6`) ((ABS
    ((`query_1_1`.`f_2` - `query_2_1`.`f_3`)) < ?))

PartialQuery[query_1_1, f_1#45,f_2#46] 
((`query_1_2`.`turbine_id`) AS `f_1`, 
(`query_1_2`.`status1_raw`) AS `f_2`) ()
PartialQuery[query_1_2, windfarm_id#44L,turbine_id#45,
status1_raw#46,status1#47L,status2_raw#48,status2#49L,
status#50L] () ( WHERE 
(`query_1_3`.`windfarm_id` < ?))

BaseQuery[query_1_3, windfarm_id#44L,turbine_id#45,
status1_raw#46,status1#47L,status2_raw#48,

status2#49L,status#50L] 
(SELECT * FROM `memturbine`.`turbines_model_out`)

PartialQuery[query_2_1, f_3#53] 
((`query_2_2`.`status1_raw`) AS `f_3`) ()
PartialQuery[query_2_2, windfarm_id#51L,turbine_id#52,
status1_raw#53,status1#54L,status2_raw#55,
status2#56L,status#57L] () ( WHERE 
(`query_2_3`.`windfarm_id` < ?))

BaseQuery[query_2_3, windfarm_id#51L,turbine_id#52,
status1_raw#53,status1#54L,

status2_raw#55,status2#56L,status#57L] 
(SELECT * FROM `memturbine`.`turbines_model_out`)

()

scala> df.count()
res7: Long = 1615

60 | Chapter 8: Predictive Analytics in Use



scala> df.count()
res8: Long = 1427

scala> df.count()
res9: Long = 1385

scala> df.count()
res10: Long = 1565

With this type of query, a SQL-optimized database like 
SingleStore can achieve a response in two to three seconds. With 
Spark, it can take upward of 30 minutes. This is due to the 
investment made in a SQL-optimized engine and executing 
sophisticated queries that uti‐lize the query optimizer and query 
execution facilities of SingleStore. Databases also make use of 
indexes, which keep query latency low.

Of course, you also can access SingleStore directly. Here, we are 
taking the same query from the preceding example and 
showing the explain plan in SingleStore:

EXPLAIN SELECT a.turbine_id
    FROM

(SELECT 
* 

FROM 
turbines_model_out 

WHERE 
windfarm_id < 100) a,

(SELECT 
* 

FROM 
turbines_model_out 

WHERE 
windfarm_id < 100) b

    WHERE
abs(a.status1_raw - b.status1_raw) < 0.00000000001;

+--------------------------------------------------------------+
| EXPLAIN |
+--------------------------------------------------------------+
| Project [a.turbine_id] |
| Filter [ABS(a.status1_raw - b.status1_raw) < .00000000001]
| NestedLoopJoin |
| |---TableScan 1tmp AS b storage:list stream:no
| |   TempTable |
| |   Gather partitions:all |
| |   Project [turbines_model_out_1.status1_raw] |
| |   IndexRangeScan memturbine.turbines_model_out AS 
  turbines_model_out_1, PRIMARY KEY 
  (windfarm_id, turbine_id) scan:[windfarm_id < 100] |

PowerStream at the Command Line | 61



| TableScan 0tmp AS a storage:list stream:yes
| TempTable |
| Gather partitions:all |
| Project [turbines_model_out.turbine_id,    
  turbines_model_out.status1_raw]
| IndexRangeScan memturbine.turbines_model_out, PRIMARY KEY 
  (windfarm_id, turbine_id) scan:[windfarm_id < 100]
+--------------------------------------------------------------+

This is a distributed plan that begins with an index scan and a nes‐
ted loop. Applying the predicate windfarm_id < 100 enables the 
database to take advantage of that index.

This query runs in parallel. There is a Gather operator to pull the 
data into the aggregator.

We do a similar operation for other side of join, and within that per‐
form a nested loop join.

For every record on one table, we are looking up that record in 
another table according to the predicate of the condition of that 
join.

Using the power of Kafka, Spark, and an in-memory database like 
SingleStore together, you can go from live data to predictive 
analytics in a few simple steps. This quickly gets the technology into 
the busi‐ness to be more efficient with critical assets.

62 | Chapter 8: Predictive Analytics in Use



CHAPTER 9

Techniques for Predictive
Analytics in Production

An overarching theme throughout this book has been the accessibil‐
ity of machine learning. Many powerful, well-understood techni‐
ques have been around for decades. What has changed in the past
few years are parallel advances in software and hardware that led to
the rise of distributed data processing systems.

Real-Time Event Processing
The definition of real time, in terms of specifying a time window,
varies dramatically by industry and application. However, a few
design principles can improve predictive analytics performance in a
wide variety of applications.

Designing a data processing system is a process of deciding when
and where computation will happen. In general, all data requires
some degree of processing before it can be analyzed. System archi‐
tects must decide what processing happens at which stage of the data
pipeline. At a high level, it is a decision between preprocessing data,
which requires more time at the outset but makes data easier to
query, versus simply capturing and storing data in its arrival format
and doing additional processing at query time.

63



Structuring Semi-Structured Data
For example, suppose that you are tracking user behavior on an 
ecommerce website. Most of the information, such as event data, 
will arrive in a semi-structured format with information like user 
ID, page ID, and timestamp. In fact, there are probably several dif‐
ferent types of events: product page view, product search, customer 
account login, product purchase, view related product, and so on. A 
single user session likely consists of tens or hundreds of events. A 
high-traffic ecommerce website might produce thousands of events 
per second.

One option is to store each event record in its arrival format. This 
solution requires essentially no preprocessing and records can go 
straight to a database (assuming the database supports JSON or 
another semi-structured data format). Querying the data will likely 
require performing some aggregation on the fly because every event 
is its own record.

You could use a key-value or document store, but then you would 
sacrifice query capabilities like JOINs. Moreover, all modern rela‐
tional databases offer some mechanism for storing and querying 
semi-structured data. SingleStore, for example, offers a JSON 
column type. With a modern database that processes, stores, and 
queries relational data together with semi-structured data, even in 
the same query, there are few practical business reasons to use a 
datastore without familiar relational capabilities.

Suppose that you store each event as its own record in a single col‐
umn table, where the column is type JSON.

CREATE TABLE events ( event JSON NOT NULL );

EXPLAIN events;
+-------+------+------+------+---------+-------+
| Field | Type | Null | Key  | Default | Extra |
+-------+------+------+------+---------+-------+
| event | JSON | NO   |      | NULL    |       |
+-------+------+------+------+---------+-------+
1 row in set (0.00 sec)

This approach requires little preprocessing before inserting a record.

INSERT INTO
    events ( event )
VALUES
    ( '{ "user_id": 1234, "purchase_price": 12.34 }' );

64 | Chapter 9: Techniques for Predictive Analytics in Production



The query to find the sum total of all of one customer’s purchases
might look like the following:

SELECT
    event::user_id user_id,
SUM ( event::$purchase_price )total_spent
FROM
    events
WHERE
    event::$user_id = 1234

This approach will work for small datasets, up to tens or hundreds
of thousands of records, but even then will add some query latency
because you a querying schemaless objects. The database must
check every JSON object to make sure it has the proper attributes
(purchase_price for example) and also compute an aggregate. As
you add more event types with different sets of attributes and also
data volumes grow, this type of query becomes expensive.

A possible first step is to create computed columns that extract val‐
ues of JSON attributes. You can specify these computed columns
when creating the table, or after creating the table use ALTER
TABLE.

CREATE TABLE
    events (

event JSON NOT NULL,
user_id AS event::$user_id PERSISTED INT,
price AS event::$purchase_price PERSISTED FLOAT

    );

This will extract the values for user_id and purchase_price when 
the record is inserted, which eliminates computation at query execu‐
tion time. You can also add indexes to the computed columns to 
improve scan performance if desired. Records without user_id or 
purchase_price attributes will have NULL values in those compu‐
ted columns. Depending on the number of event types and their 
overlap in attributes, it might make sense to normalize the data and 
divide it into multiple tables. Normalization and denormalization is 
usually not a strict binary—you need to find a balance between 
insert latency and query latency. Modern relational databases like 
SingleStore enable a greater degree of normalization than 
traditional distributed datastores because of the distributed JOIN 
execution. Even though concepts like business intelligence and 
star schemas are commonly associated with offline data 
warehousing, in some

Real-Time Event Processing | 65



cases it is possible to report on real-time data using these techni‐
ques.

Suppose that you have two types events: purchases and product page
views. The tables might look like this:

CREATE TABLE purchases (
    event JSON NOT NULL,
    user AS event::$user_id PERSISTED INT,
    session AS event::$session_id PERSISTED INT,
    product AS event::$product_id PERSISTED TEXT,
    price AS event::$purchase_price PERSISTED FLOAT
);

CREATE TABLE views (
    event JSON NOT NULL,
    user AS event::$user_id PERSISTED INT,
    session AS event::$session_id PERSISTED INT,
    product AS event::$product_id PERSISTED TEXT,
    time_on_page AS event::$time_on_page PERSISTED INT
);

We assume that views will contain many more records than purcha‐
ses, given that people don’t buy every product they view. This moti‐
vates the separation of purchase events from view events because it
saves storage space and makes it much easier to scan purchase data.

Now, suppose that you want a consolidated look into both views and
purchases for the purpose of training a model to predict the likeli‐
hood of purchase. One way to do this is by using a VIEW that joins
purchases with views.

CREATE VIEW v AS
SELECT

p.user user,
p.product product,
p.price price,
COUNT(v.user) num_visits,
SUM(v.time_on_page) total_time

FROM
    purchases p INNER JOIN views v;

Now, as new page view and purchase data comes in, that informa‐
tion will immediately be reflected in queries on the view. Although 
normalization and VIEWs are familiar concepts from data ware‐
housing, it is only recently that they could be applied to real-time 
problems. With a real-time relational database like SingleStore, 
you can perform business intelligence-style analytics on changing 
data.

66 | Chapter 9: Techniques for Predictive Analytics in Production



These capabilities become even more powerful when combined with
transactional features UPDATEs and “upserts” or INSERT ... ON

DUPLICATE KEY UPDATE ... commands. This allows you to store
real-time statistics, like counts and averages, even for very-high-
velocity data.

Real-Time Data Transformations
In addition to structuring data on the fly, there are many tasks tradi‐
tionally thought of as offline operations that can be incorporated
into real-time pipelines. In many cases, performing some transfor‐
mation on data before applying a machine learning algorithm can
make the algorithm run faster, give more accurate results, or both.

Feature Scaling
Many machine learning algorithms assume that the data has been
standardized in some way, which generally involves scaling relative
to the feature-wise mean and variance. A common and simple
approach is to subtract the feature-wise mean from each sample fea‐
ture, then divide by the feature-wise standard deviation. This kind
of scaling helps when one or a few features affect variance signifi‐
cantly more than others and can have too much influence during
training. Variance scaling, for example, can dramatically speed up
training time for a Stochastic Gradient Descent regression model.

The following shows a variance scaling transformation using a scal‐
ing function from the scikit-learn data preprocessing library:

>>> from SingleStore.common import database
>>> from sklearn import preprocessing
>>> import numpy as np
>>> with database.connect(host="127.0.0.1", port=3306, 
... user = "root", database = "sample") as conn:
...     a = conn.query("select * from t")
>>> print a
[Row({'a': 0.0, 'c': -1.0, 'b': 1.0}), 
Row({'a': 2.0, 'c': 0.0, 'b': 0.0}), 
Row({'a': 1.0, 'c': 2.0, 'b': -1.0})]
>>> n = np.asarray(a.rows)
>>> print n
[[ 0.  1. -1.]
 [ 2.  0.  0.]
 [ 1. -1.  2.]]
>>> n_scaled = preprocessing.scale(n)
>>> print n_scaled

Real-Time Data Transformations | 67



[[-1.22474487  1.22474487 -1.06904497]
 [ 1.22474487  0.         -0.26726124]
 [ 0.         -1.22474487  1.33630621]]

This approach finds a scaled representation for a particular set of
feature vectors. It also uses the feature-wise means and standard
deviations to create a generalized transformation into the variance-
standardized space.

>>> n_scaler = preprocessing.StandardScaler().fit(n)
>>> print n_scaler.mean_
[ 1.          0.          0.33333333]
>>> print n_scaler.scale_
[ 0.81649658  0.81649658  1.24721913]

With this information, you can express the generalized transforma‐
tion as a view in the database.

CREATE VIEW scaled AS
SELECT
    (t.a - 1.0) / .8164 scaled_a,
    (t.b - 0.0) / .8164 scaled_b,
    (t.c - 0.33) / 1.247 scaled_c
FROM
    my_table t

Now, you interactively query or train a model using the scaled view.
Any new records inserted into my_table will immediately show up
in their scaled form in the scaled view.

Real-Time Decision Making
When you optimize real-time data pipelines for fast training, you
open new opportunities to apply predictive analytics to business
problems. Modern data processing techniques confound the termi‐
nology we traditionally use to talk about analytics. The “online” in
Online Analytical Processing (OLAP) refers to the experience of an
analyst or data scientist using software interactively. “Online” in
machine learning refers to a class of algorithms for which the model
can be updated iteratively, as new records become available, without
complete retraining that needs to process the full dataset again.

With an optimized data pipeline, there is another category of appli‐
cation that uses models that are “offline” in the machine learning
sense but also don’t fit into the traditional interaction-oriented defi‐
nition of OLAP. These applications fully retrain a model using the
most up to date data but do so in a narrow time window. When data

68 | Chapter 9: Techniques for Predictive Analytics in Production



is changing, a predictive model trained in the past might not reflect
current trends. The frequency of retraining depends on how long a
newly trained model remains accurate. This interval will vary dra‐
matically across applications.

Suppose that you want to predict recent trends in financial market
data, and you want to build an application that alerts you when a
security is dramatically increasing or decreasing in value. You might
even want to build an application that automatically executes trades
based on trend information.

We’ll use the following example schema:

CREATE TABLE `ask_quotes` (
    `ticker` char(4) NOT NULL,
    `ts` BIGINT UNSIGNED NOT NULL,
    `ask_price` MEDIUMINT(8) UNSIGNED NOT NULL,
    `ask_size` SMALLINT(5) UNSIGNED NOT NULL,
    `exchange` ENUM('NYS','LON','NASDAQ','TYO','FRA') NOT NULL,
    KEY `ticker` (`ticker`,`ts`),
);

In a real market scenario, new offers to sell securities (“asks”) stream
in constantly. With a real-time database, you are able to not only
record and process asks, but serve data for analysis simultaneously.
The following is a very simple Python program that detects trends
in market data. It continuously polls the database, selecting all recent
ask offers within one standard deviation of the mean price for that
interval. With recent sample data, it trains a linear regression model,
which returns a slope (the “trend” you are looking for) and some
additional information about variance and how much confidence
you should have in your model.

#!/usr/bin/env python

from scipy import stats
from SingleStore.common import connection_pool

pool = connection_pool.ConnectionPool()
db_args = [<HOST>, <PORT>, <USER>, <PASSWORD>, <DB_NAME>]

# ticker for security whose price you are modeling 
TICKER = <ticker>  

while True:

    with pool.connect(*db_args) as c:
a = c.query('''

SELECT ask_price, ts

Real-Time Decision Making | 69



FROM (
SELECT *
FROM ask_quotes
ORDER BY ts DESC LIMIT 10000) window

JOIN (
SELECT AVG(ask_price) avg_ask
FROM ask_quotes WHERE ticker = "{0}") avg

JOIN (
SELECT STD(ask_price) std_ask
FROM ask_quotes
WHERE ticker = "{0}") std

WHERE ticker="{0}"
AND abs(ask_price-avg.avg_ask) < (std.std_ask);

'''.format(TICKER))
x = [a[i]['ts'] for i in range(len(a) - 1)]
y = [a[i]['ask_price'] for i in range(len(a) - 1)]

slope, int, r_val, p_val, err = stats.linregress(x, y)

With the information from the linear regression, you can build a
wide array of applications. For instance, you could make the pro‐
gram send a notification when the slope of the regression line
crosses certain positive or negative thresholds. A more sophisticated
application might autonomously execute trades using market trend
information. In the latter case, you almost certainly need to use a
more complex prediction technique than linear regression. Selecting
the proper technique requires balancing the need for low training
latency versus the difficulty of the prediction problem and the com‐
plexity of the solution.

70 | Chapter 9: Techniques for Predictive Analytics in Production



CHAPTER 10

From Machine Learning to
Artificial Intelligence

Statistics at the Start
Machine-learning methods have changed rapidly in the past several
years, but a larger trend began about a decade ago. Specifically, the
field of data science emerged and we experienced an evolution from
statisticians to computer engineers and algorithms (see Figure 10-1).

Figure 10-1. The evolution from statisticians to computer engineers
and algorithms

Classical statistics was the domain of mathematics and normal dis‐
tributions. Modern data science is infinitely flexible on the method
or properties, as long as it uncovers a predictable outcome. The clas‐
sical approach involved a unique way to solve a problem. But new
approaches vary drastically, with multiple solution paths.

To set context, let’s review a standard analytics and split a dataset
into two parts, one for building the model, and one for testing it,

71



aiming for a model without overfitting the data. Overfitting can
occur when assumptions from the build set do not apply in general.

For example, as a paint company seeking homeowners that might be
getting ready to repaint their houses, the test set may indicate the
following:

Name Painted house
within 12 months

Sam Yes
Ian No

Understandably, you cannot generalize on this property. But you
could look at income pattern, data regarding the house purchase,
and recently filed renovation permits to create a far more generaliz‐
able model. This kernel of an approach spawned the transition of an
industry from statistics to machine learning.

The “Sample Data” Explosion
Just one generation ago, data was extremely expensive. There could
be cases in which 100 data points was the basis of a statistical model.
Today, at web-scale properties like Facebook and Google, there are
hundreds of millions to billions of records captured daily.

At the same time, compute resources continue to increase in power
and decline in cost. Coupled with the advent of distributed comput‐
ing and cloud deployments, the resources supporting a computer
driven approach became plentiful.

The statisticians will say that new approaches are not perfect, but for
that matter, statistics are not, either. But what sets machine learning
apart is the ability to invest and discover algorithms to cluster obser‐
vations, and to do so iteratively.

An Iterative Machine Process
Where machine learning stepped ahead of the statistics pack was
this ability to generate iterative tests. Examples include Random
Forest, an approach that uses rules to create an ensemble of decision
trees and test various branches. Random Forest is one way to reduce
overfitting to the training set that is common with simpler decision
tree methods.

72 | Chapter 10: From Machine Learning to Artificial Intelligence



Modern algorithms in general use more sophisticated techniques
than Ordinary Least Squares (OLS) regression models.

Keep in mind that regression has a mathematical solution. You can
put it into a matrix and compute the result. This is often referred to
as a closed-form approach.

The matrix algebra is typically (X’X)–1X’Y, which leads to a declara‐
tive set of steps to derive a fixed result. Here it is in more simple
terms:

If X + 4 = 7, what is X?

You can solve this type of problem in a prescribed step and you do
not need to try over and over again. At the same time, for far more
complex data patterns, you can begin to see how an iterative
approach can benefit.

Digging into Deep Learning
Deep learning takes machine learning one step further by applying
the idea of neural networks. Here we are also experiencing an itera‐
tive game, but one that takes calculations and combinations as far as
they can go.

The progression from machine learning to deep learning centers on
two axes:

• Far more complex transfer functions, and many of them, hap‐
pening at the same time. For example, take the sng(x) to the
10th power, compare the result, and then recalibrate.

• Functions in combinations and in layers. As you seek parame‐
ters that get you closest to the desired result, you can nest func‐
tions. The ability to introduce complexity is enormous. But life
and data about life is inherently complex, and the more you can
model, the better chance you have to drive positive results.

For example, a distribution for a certain disease might be frequency
at a very young or very old age, as depicted in Figure 10-2.

Classical statistics struggled with this type of problem-solving
because the root of statistical science was based heavily in normal
distributions such as the example shown in Figure 10-3.

Digging into Deep Learning | 73



Figure 10-2. Sample distribution of disease prevalent at young and old
age

Figure 10-3. Sample normal distribution

Iterative machine learning models do far better at solving for a vari‐
ety of distributions as well as handling the volume of data and the
available computing capacity.

For years, machine learning methods were not possible due to
excessive computing costs. This was exacerbated by the fact that
analytics is an iterative exercise in and of itself, and the time and
computing resources to pursue machine learning made it unreason‐
able, and closed form approaches reigned.

Resource Management for Deep Learning
Though compute resources are more plentiful today, they are not yet
unlimited. So, models still need to be implementable to sustain and
support production data workflows. The benefit of a fixed-type or

74 | Chapter 10: From Machine Learning to Artificial Intelligence



closed-loop regression is that you can quickly calculate the compute
time and resources needed to solve it.

This could extend to some nonlinear models, but with a specific
approach to solving them mathematically. LOGIT and PROBIT
models, often used for applications like credit scoring, are one
example of models that return a rank between 0 and 1 and operate
in a closed-loop regression.

With machine and deep learning, computer resources are far more
uncertain. Deep learning models can create thousands of lines of
code to execute, which, without a powerful datastore, can be com‐
plex and time consuming to implement. Credit scoring models, on
the other hand, can often be solved with 10 lines of queries sharea‐
ble within an email.

So, resource management and the ability to implement models in
production remains a critical step for broad adoption of deep learn‐
ing. Take the following example:

• Nested JSON objects coming from S3 into a queryable datastore
• 30–50 billion observations per month
• 300–500 million users
• Query user profiles
• Identify people who fit a set of criteria
• Or, people who are near this retail store

Although a workload like this can certainly be built with some
exploratory tools like Hadoop and Spark, it is less clear that this is
an ongoing sustainable configuration for production deployments
with required SLAs. A datastore that uses a declarative language like
SQL might be better suited to meeting operational requirements.

Talent Evolution and Language Resurgence
The mix of computer engineering and algorithms favored those flu‐
ent in these trends as well as statistical methods. These data scien‐
tists program algorithms at scale, and deal with raw data in large
volumes, such as data ending up in Hadoop.

This last skill is not always common among statisticians and is one
of the reasons driving the popularity of SQL as a programming layer
for data. Deep learning is new, and most companies will have to

Digging into Deep Learning | 75



bridge this gap from classical approaches. This is just one of the rea‐
sons why SQL has experienced such a resurgence as it brings a well-
known approach to solving data challenges.

The Move to Artificial Intelligence
The move from machine learning to broader artificial intelligence
will happen. We are already seeing the accessibility with open source
machine learning libraries and widespread sharing of models.

But although computers are able to tokenize sentences, semantic
meaning is not quite there. Alexa, Amazon’s popular voice assistant,
is looking up keywords to help you find what you seek. It does not
grasp the meaning, but the machine can easily recognize directional
keywords like weather, news, or music to help you.

Today, the results in Google are largely based on keywords. It is not
as if the Google search engine understands exactly what we were
trying to do, but it gets better all the time.

So, no Turing test yet—we speak of the well-regarded criteria to
indicate that a human cannot differentiate from a human or a com‐
puter when posing a set of questions.

Therefore, complex problems are still not likely solvable in the near
future, as common sense and human intuition are difficult to repli‐
cate. But our analytics and systems are continuously improving
opening several opportunities.

The Intelligent Chatbot
With the power of machine learning, we are likely to see rapid inno‐
vation with intelligent chatbots in customer service industries. For
example, when customer service agents are cutting and pasting
scripts into chat windows, how far is that from AI? As voice recogni‐
tion improves, the days of “Press 1 for X and 2 for Y” are not likely
to last long.

For example, chat is popular within the auto industry as a frequent
question is, “is this car on the lot?”

Wouldn’t it be wonderful to receive an instant response to such
questions instead of waiting on hold?

76 | Chapter 10: From Machine Learning to Artificial Intelligence



Similarly, industry watchers anticipate that more complex tasks like
trip planning and personal assistants are ready for machine-driven
advancements.

Broader Artificial Intelligence Functions
The path to richer artificial intelligence includes a set of capabilities
broken into the following categories:

• Reasoning and logical deductions to help solve puzzles
• Knowledge about the world to provide context
• Planning and setting goals to measure actions and results
• Learning and automatic improvement to refine accuracy
• Natural-language processing to communicate
• Perception from sensor inputs to experience
• Motion and robotics, social intelligence, creativity to get closer

to simulating intelligence

Each of these categories has spawned companies and often indus‐
tries, for example natural language processing has become a contest
of legacy titans such as Nuance along with newer entrants like Goo‐
gle (Google Now), Apple (Siri), and Microsoft (Cortana). Sensors
and the growth of the Internet of Things has set off a race to connect
every device possible. And robotics is quickly working its way into
more areas of our lives, from the automatic vacuum cleaner to
autonomous vehicles.

The Long Road Ahead
For all of the advancements, there are still long roads ahead. Why is
it that we celebrate click through rates online of just 1 percent? In
the financial markets, why is it that we can’t get it consistently right?
Getting philosophical for a moment, why do we have so much
uncertainty in the world?

The answers might still be unknown, but more advanced techniques
to get there are becoming familiar. And, if used appropriately, we
might find ourselves one step closer to finding those answers.

The Move to Artificial Intelligence | 77





APPENDIX A

Appendix

Sample code that generates data, runs a linear regression, and plots
the results:

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.arange(1,15)

delta = np.random.uniform(-2,2, size=(14,))

y = .9 * x + 1 +  delta

plt.scatter(x,y, s=50)

slope, int, r_val, p_val, err = stats.linregress(x, y)

plt.plot(x, slope * x + intercept)
plt.xlim(0)
plt.ylim(0)

# calling show() will open your plot in a window
# you can save rather than opening the plot using savefig()
plt.show()

Sample code that generates data, runs a clustering algorithm, and
plots the results:

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy.cluster.vq import vq, kmeans

79



data = np.vstack((np.random.rand(200,2) + \
np.array([.5, .5]),np.random.rand(200,2)))

centroids2, _ = kmeans(data, 2)
idx2,_ = vq(data,centroids2)

# scatter plot without centroids
plt.figure(1)

plt.plot(data[:,0],data[:,1], 'o')

# scatter plot with 2 centroids
plt.figure(2)

plt.plot(data[:,0],data[:,1],'o')
plt.plot(centroids2[:,0],centroids2[:,1],'sm',markersize=16)

# scatter plot with 2 centroids and point colored by cluster
plt.figure(3)

plt.plot(data[idx2==0,0],data[idx2==0,1],'ob',data[idx2==1,0], \
data[idx2==1,1],'or')

plt.plot(centroids2[:,0],centroids2[:,1],'sm',markersize=16)

centroids3, _ = kmeans(data, 3)
idx3,_ = vq(data,centroids3)

# scatter plot with 3 centroids and points colored by cluster
plt.figure(4)

plt.plot(data[idx3==0,0],data[idx3==0,1],'ob',data[idx3==1,0], \
data[idx3==1,1],'or',data[idx3==2,0], \
data[idx3==2,1],'og')

plt.plot(centroids3[:,0],centroids3[:,1],'sm',markersize=16)

# calling show() will open your plots in windows, each opening
# when you close the previous one
# you can save rather than opening the plots using savefig()
plt.show()

80 | Appendix A: Appendix



About the Authors
Conor Doherty is a technical marketing engineer at 
SingleStore, responsible for creating content around database 
innovation, analyt‐ics, and distributed systems. He also sits on 
the product manage‐ment team, working closely on the Spark-
SingleStore Connector. While Conor is most comfortable working 
on the command line, he occasionally takes time to write blog posts 
(and books) about data‐bases and data processing.

Steven Camiña is a principal product manager at SingleStore. 
His experience spans B2B enterprise solutions, including databases 
and middleware platforms. He is a veteran in the in-memory space, 
hav‐ing worked on the Oracle TimesTen database. He likes to 
engineer compelling products that are user-friendly and drive 
business value.

Kevin White is the Director of Marketing and a content contributor 
at SingleStore. He has worked in the digital marketing industry 
for more than 10 years, with deep expertise in the Software-as-a-
Service (SaaS) arena. Kevin is passionate about customer 
experience and growth with an emphasis on data-driven decision 
making.

Gary Orenstein is the Chief Marketing Officer at SingleStore 
and leads marketing strategy, product management, communications, 
and customer engagement. Prior to SingleStore, Gary was the 
Chief Marketing Officer at Fusion-io, and he also served as 
Senior Vice President of Products during the company’s 
expansion to multiple product lines. Prior to Fusion-io, Gary 
worked at infrastructure companies across file systems, caching, 
and high-speed networking.


	Copyright
	Table of Contents
	Introduction
	An Anthropological Perspective

	Chapter 1. Building Real-Time Data Pipelines
	Modern Technologies for Going Real-Time
	High-Throughput Messaging Systems
	Data Transformation
	Persistent Datastore
	Moving from Data Silos to Real-Time Data Pipelines
	The Enterprise Architecture Gap
	Real-Time Pipelines and Converged Processing


	Chapter 2. Processing Transactions and Analytics in a Single Database
	Hybrid Data Processing Requirements
	Benefits of a Hybrid Data System
	New Sources of Revenue
	Reducing Administrative and Development Overhead

	Data Persistence and Availability
	Data Durability
	Data Availability
	Data Backup


	Chapter 3. Dawn of the Real-Time Dashboard
	Choosing a BI Dashboard
	Real-Time Dashboard Examples
	Tableau
	Zoomdata
	Looker

	Building Custom Real-Time Dashboards
	Database Requirements for Real-Time Dashboards


	Chapter 4. Redeploying Batch Models in Real Time
	Batch Approaches to Machine Learning
	Moving to Real Time: A Race Against Time
	Manufacturing Example
	Original Batch Approach
	Real-Time Approach
	Technical Integration and Real-Time Scoring
	Immediate Benefits from Batch to Real-Time Learning

	Chapter 5. Applied Introduction to Machine Learning
	Supervised Learning
	Regression
	Classification

	Unsupervised Learning
	Cluster Analysis
	Anomaly Detection


	Chapter 6. Real-Time Machine Learning Applications
	Real-Time Applications of Supervised Learning
	Real-Time Scoring
	Fast Training and Retraining

	Unsupervised Learning
	Real-Time Anomaly Detection
	Real-Time Clustering


	Chapter 7. Preparing Data Pipelines for Predictive Analytics and Machine Learning
	Real-Time Feature Extraction
	Minimizing Data Movement
	Dimensionality Reduction

	Chapter 8. Predictive Analytics in Use
	Renewable Energy and Industrial IoT
	PowerStream: A Showcase Application of Predictive Analytics for Renewable Energy and IIoT
	PowerStream Software Architecture
	PowerStream Hardware Configuration
	PowerStream Application Introduction
	PowerStream Details
	Advantages of Spark Coupled with a Distributed, Relational, Memory-Optimized Database

	SQL Pushdown Details
	PowerStream at the Command Line

	Chapter 9. Techniques for Predictive Analytics in Production
	Real-Time Event Processing
	Structuring Semi-Structured Data

	Real-Time Data Transformations
	Feature Scaling

	Real-Time Decision Making

	Chapter 10. From Machine Learning to Artificial Intelligence
	Statistics at the Start
	The “Sample Data” Explosion
	An Iterative Machine Process
	Digging into Deep Learning
	Resource Management for Deep Learning
	Talent Evolution and Language Resurgence

	The Move to Artificial Intelligence
	The Intelligent Chatbot
	Broader Artificial Intelligence Functions
	The Long Road Ahead


	Appendix A. Appendix
	About the Authors
	ebook ad.pdf
	MemSQL
	Copyright
	Table of Contents
	Foreword
	Chapter 1. How Data Drives Innovation
	The Evolution of Information
	The Data-Driven Company
	Key Advantages of the Data-Driven Company

	Chapter 2. The Rise of Operational Analytics
	Decision Making at the Speed of Business
	The Emergence of Operational Analytics
	“Can’t Wait” Data for Decision Making
	“Won’t Wait” Data for Customer Experiences
	Single Source of Truth

	Chapter 3. Challenges with Data Platform Infrastructure
	The Trouble with Building Up a Data Platform
	Database Types
	OLTP Databases
	OLAP Databases
	NoSQL Databases

	Special-Purpose Data Stores
	Data Warehouses
	Data Lakes
	Distributed File Systems

	Data Pipelines
	Spark and the Shift from Batch to Streaming
	Kafka Takes Streaming Further
	Achieving Near-Real-Time Capabilities for Data Transfer

	Chapter 4. NewSQL and Operational Analytics
	The NewSQL Revolution
	What Exactly Is NewSQL?
	A Brief Note on NewSQL and Database Theory 
	The Operational Database and Operational Analytics
	Key Features of the Operational Database
	Zero Downtime
	Shared-Nothing Scale-Out
	Balance Consistency and Availability
	High-Performance Data Ingestion
	Fast Query Response Time
	Security to Stake Your Company On

	Use Cases
	Ecommerce
	Telecommunications


	Chapter 5. Selecting the Right Database for the Job
	The Road Ahead
	Database Selection Criteria
	Selection Criteria for Operational Analytics
	Integrations
	Automation
	Extensibility
	Machine Learning Automation
	Security

	NewSQL Offerings
	MemSQL
	Google Cloud Spanner
	CockroachDB

	Decision Time

	About the Author




